经管博士科研基础【12】包络定理

本文探讨了包络定理在无约束和有约束条件下的应用。无约束时,函数在极值点处对参数的偏导数与直接对参数求偏导后带入极值点的结果相同。在存在约束条件下,包络定理帮助解决函数值关于参数的导数问题,涉及约束函数的处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当我们知道一个函数的最优解时,我们要求解这一个函数的值函数关于函数中某一个参数的导数,那么就可以使用包络定理。

1. 无约束条件下的包络定理

函数在其极值点处对一个参数(参数不是自变量)取偏导数的结果,等价于这个函数对其参数取偏导数,再带入极值点的结果。

2. 有约束条件下的包络定理

对与带有约束条件g(x,a)的限制,可以得到如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱听雨声的北方汉

你的鼓励是我努力前进的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值