1. 原函数
首先认识一下原函数:
原函数的定义: 如果区间I上,可导函数F(x)的导函数为f'(x),即对任一x∈I都有 F'(x)=f(x) 或 dF(x)=f(x) dx 那么函数F(x)就称为f(x)(或 f(x) dx)在区间 I 内的一个原函数。
原函数存在定理:如果函数f(x)在区间 I 上连续,那么在区间 I 上存在可导函数F(x),使对任一x∈I都有 F'(x)=f(x).
简单地说:连续函数一定有原函数。
在区间 I 上,函数f(x)的带有任意常数项的的原函数称为f(x)( f(x)dx ) 在区间 I 上的不定积分,记作 ∫ f(x)dx . 其中 记号 ∫ 称为 积分号,f(x)称为被积函数 f(x)dx 称为被积表达式,x 称为积分变量。
2. 常见的积分公式