在【26】一章中,我们学习到可以通过判断海塞矩阵是正定矩阵或负定矩阵来判断函数的极值问题,为此,我们今天就回顾一下怎么判断海塞矩阵或者说任意一个矩阵是一个正定矩阵或者负定矩阵。
一、正定矩阵的定义

其实,我们可以看到上面的任意非零向量x可以更换为“单位向量”。也就是说,我们可以得到下面的定义,这一个定义和上面的定义是同质的。
另外,从二次型的角度(也就是说,将上面的式子转换为了与二次型一一对应的结构),可以得到如下定义:
二.、判断一个矩阵式正定矩阵或者负定矩阵?

如果将正定矩阵的条件xTAx > 0弱化为xTAx≥ 0,则称对称阵A是半定正的。
因此,根据上面的推论和定理11,我们就可以得到判断矩阵的正定型或者负定型的两种方法:
1.求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。(一般这种方法,在我们经管博士运用博弈论方法时很难求解得到,因此方法2 最为常用)
2.计算A的各阶顺序主子式。若A的各阶顺序主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。
三. 矩阵正定性的性质
1、正定矩阵的特征值都是正数。
2、正定矩阵的所有子行列式都是正数。
3.若A为n阶正定矩阵,则A为n阶可逆矩阵。

本文介绍了正定矩阵和负定矩阵的概念,强调了它们在函数极值问题中的应用。通过定义和二次型的角度,阐述了正定矩阵的特性,并提供了两种判断方法:特征值法和主子式法。正定矩阵的特征值和子行列式皆为正,且为可逆矩阵。
2645

被折叠的 条评论
为什么被折叠?



