深度学习
文章平均质量分 75
two_star
Email:xingxin.hsing@gmail.com
Blog:https://twostarxx.github.io/
展开
-
【TensorFlow】踩坑记
文章目录1. tf.estimator.BoostedTreesRegressor 1. tf.estimator.BoostedTreesRegressor Error: For now, only support Numeric column with shape less than 2, but column `estimator_features` got: (1, 234) 运行环境:...原创 2020-01-08 13:25:22 · 405 阅读 · 0 评论 -
【TensorFlow基础知识】概念入门:Graph Session Tensor
本系列根据模型训练的整个流程,基于TensorFlow(后文统一简写为tf)的源码,对tf中的实际运行进行讲解。开发者不仅需要熟练使用tf,通过了解tf源码中的流程,可以根据tf的bug信息快速定位bug。 由于tf的中英文官方文档解释较为简洁,同时,不同bug的报错位置可能存在相同的情况,因此建议读者直接下载tf的源码,阅读注释效率更高。此外,除tf源码外,还需要对第三方包进行下载,例如esti...原创 2019-11-28 23:07:47 · 284 阅读 · 0 评论 -
【深度网络基础】序列模型
序列模型循环序列模型(RNN) 循环序列模型(RNN) 通过时间的反向传播计算公式原创 2018-11-27 20:41:22 · 795 阅读 · 0 评论 -
风格迁移(Style Transfer)
风格迁移A Neural Algorithm of Artistic Style. Leon A. Gatys .etc A Neural Algorithm of Artistic Style. Leon A. Gatys .etc 本文将一副图像的内容与另一幅图像的风格结合起来,共同最小化损失。 ...原创 2018-11-28 22:52:41 · 1807 阅读 · 0 评论 -
【深度学习基础】Batch Normalization
@TOC 超参调试 相较于机器学习中的定步长搜索。在深度学习中,随机选择点进行计算比较超参数设定值的好坏。 如果找到部分点效果很好,那么放大该区域,接着进行随机选点计算比较。例如下图所示。 Batch Normalization 1. 单一隐藏层 2. 深度网络 tf.nn.batch-normalization() ...原创 2018-11-25 23:03:45 · 1103 阅读 · 0 评论 -
【深度学习基础】激活函数的优缺点比较
激活函数的优缺点比较激活函数常用的激活函数1. sigmoid2. ReLU3. softmax优缺点比较 激活函数 常用的激活函数 1. sigmoid 2. ReLU 3. softmax 优缺点比较 参考 https://blog.csdn.net/u011684265/article/details/78039280 ...原创 2018-11-22 17:21:01 · 1278 阅读 · 0 评论 -
【深度学习基础】梯度下降
梯度下降 具体的梯度下降的理论和公式推导,部分博客已经解释的很详尽了,本文更多的在于梯度下降的拓展问题。原创 2018-11-22 14:41:40 · 1508 阅读 · 0 评论 -
【深度学习基础】梯度下降的优化算法
【深度学习基础】Mini-batchMini-batch算法mini-batch size的选择指数加权平均偏差修正(Bias correction)Momentum梯度下降法公式推导RMSprop(root mean square prop)Adam优化算法(Adaptive Moment Estimation) Mini-batch 1 epoch:一次遍历了训练集,一次遍历智能做一个梯度下降...原创 2018-11-23 22:43:57 · 1326 阅读 · 0 评论 -
深度学习及机器学习
深度学习深度学习基础论文阅读机器学习模型 深度学习基础 【深度学习基础】《深度学习》李宏毅 【深度学习基础】正则化 (18.11.21) 【深度学习基础】正反向传播 (18.11.21) 论文阅读 YOLO mask-RCNN SSD 机器学习模型 Xgboost LightGBM ...原创 2018-11-21 21:15:23 · 7244 阅读 · 1 评论 -
【深度学习基础】正反向传播
文章目录深度神经网络的前向传播 深度神经网络的前向传播 前向传播的公式推导原创 2018-11-21 21:11:29 · 1085 阅读 · 0 评论 -
【深度学习基础】正则化
https://mooc.study.163.com/learn/2001281003?tid=2001391036#/learn/content?type=detail&id=2001701043&cid=2001694281 常用L1和L2正则化,随机失活(dropout)。 第一周 深度学习的实战 1.4 L1 & L2 为什么则会原创 2018-11-21 21:10:42 · 2424 阅读 · 0 评论 -
【深度学习基础】《深度学习》李宏毅
目录 Lecture I: Introduction of Deep Learning 1. 深度学习的步骤 2. 全连接前馈神经网络(Fully Connect Feedforward Network) 2.1 神经元 2.2. 激励函数 2.3 Softmax layer 2.4 网络结构 2.5 应用举例(数字识别) 3. 对函数进行优化(goodness of funct...原创 2018-11-21 21:09:05 · 10057 阅读 · 1 评论