目录
Lecture I: Introduction of Deep Learning
2. 全连接前馈神经网络(Fully Connect Feedforward Network)
3. 对函数进行优化(goodness of function)
4. 选择最好的函数(How to pick the best function)
Example: Handwriting Digit Recognition
Lecture II: Tips for Training Deep Neural Network
3. 新的激活函数(activation function)
Lecture III: Variants of Neural Network
3. 长短期记忆网络(Long Short-term Memory, LSTM)
Lecture I: Introduction of Deep Learning
1. 深度学习的步骤
机器学习的步骤:
Step 1: 定义一个函数集合(define a set of function)
Step 2: 对函数进行优化(goodness of function)
Step 3: 选择最好的函数(pick the best function)
将图像识别抽象为一个函数,以下举例说明:
深度学习的步骤:
Step 1: 定义神经网络(Neural Network)
Step 2: 对函数进行优化(goodness of function)
Step 3: 选择最好的函数(pick the best function)
2. 全连接前馈神经网络(Fully Connect Feedforward Network)
2.1 神经元
2.2. 激励函数
对于激励函数的理解:https://blog.csdn.net/hyman_yx/article/details/51789186
2.3 Softmax layer
传统输出层:
softmax layer作为输出层(重点)
2.4 网络结构
备注:激励函数设定见3图。
2.5 应用举例(数字识别)
将图片划分为16*16,每一个像素作为一个输入的x,X的维度为256*1。
建立模型后,
3. 对函数进行优化(goodness of function)
3.1 学习目标(Learning Target)
3.2 损失(Loss)
4. 选择最好的函数(How to pick the best function)
4.1 梯度下降(Gradient Descent)
5. Keras
Example: Handwriting Digit Recognition
Lecture II: Tips for Training Deep Neural Network
1. 选择合适的loss function
例如:
平方误差(loss='mse'),交叉熵(loss='categorical_crossentropy')
当使用softmax作为输出层时,选择交叉熵作为loss。见下图。
2. Mini-batch
下图中为mini-batch的代码解释。
3. 新的激活函数(activation function)
由于存在梯度消失问题,所以需要选择新的activation function.
3.1 ReLU
ReLU会将复杂的网络部分置0,简化网络。
model.add(Activation('sigmoid'))
// 改变为
model.add(Activation('relu'))
3.2 Maxout
ReLU是一种特殊的Maxout函数。
3.3 合适的学习率(Adagrad)
开始的学习率设置的较大,每一个epoch都将学习率降低。
其他:
- Adagrad
- RMSprop
- Adadelta
- "No more pesky learning rates"
- AdaSecant
- Adam
- Nadam
3.4 冲量(Momentum)
4. Early Stopping
Early Stopping可以防止过拟合。详细见下图。
5. Weight Decay
6. Dropout
Dropout可以是一种模型融合。
Lecture III: Variants of Neural Network
Connected Neural Network(CNN)
1. 一个神经元只需要检测一个pattern
2. Subsampling
3. Max Pooling
4. Flatten
5. CNN整体过程
Recurrent Neural Network(RNN)
1. 基本概念
在RNN中,隐层神经元的输出值都被保存到记忆单元中,下一次再计算输出时,隐层神经元会将记忆单元中的值认为是输入的一部分来考虑。
举例:
2. 双向RNN(Bidirectional RNN)
3. 长短期记忆网络(Long Short-term Memory, LSTM)
Lecture IV: Next Wave
1. Supervised Learning
- Ultra Deep Network
- Attention Model
2. Reinforcement Learning
3. Unsupervised Learning
- Image: Realizing what the World Looks Like
- Text: Understanding the Meaning of Words
- Audio: Learning human language without supervision