目录
Lecture I: Introduction of Deep Learning
2. 全连接前馈神经网络(Fully Connect Feedforward Network)
3. 对函数进行优化(goodness of function)
4. 选择最好的函数(How to pick the best function)
Example: Handwriting Digit Recognition
Lecture II: Tips for Training Deep Neural Network
3. 新的激活函数(activation function)
Lecture III: Variants of Neural Network
3. 长短期记忆网络(Long Short-term Memory, LSTM)
Lecture I: Introduction of Deep Learning
1. 深度学习的步骤
机器学习的步骤:
Step 1: 定义一个函数集合(define a set of function)
Step 2: 对函数进行优化(goodness of function)
Step 3: 选择最好的函数(pick the best function)
将图像识别抽象为一个函数,以下举例说明:
深度学习的步骤:
Step 1: 定义神经网络(Neural Network)
Step 2: 对函数进行优化(goodness of function)
Step 3: 选择最好的函数(pick the best function)
2. 全连接前馈神经网络(Fully Connect Feedforward Network)
2.1 神经元
2.2. 激励函数
对于激励函数的理解:https://blog.csdn.net/hyman_yx/article/details/51789186
2.3 Softmax layer
传统输出层:
softmax layer作为输出层(重点)
2.4 网络结构
备注:激励函数设定见3图。
2.5 应用举例(数字识别)
将图片划分为16*16,每一个像素作为一个输入的x,X的维度为256*1。
建立模型后,