C++进阶——STL源码之红黑树(_Rb_tree)

STL源码之红黑树

红黑树(Red Black Tree) 是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组;红黑树是在1972年由Rudolf Bayer发明的,当时被称为平衡二叉B树(symmetric binary B-trees)。后来,在1978年被 Leo J. Guibas 和 Robert Sedgewick 修改为如今的“红黑树”。

红黑树是一种特化的AVL树(平衡二叉树),都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能;它虽然是复杂的,但它的最坏情况运行时间也是非常良好的,并且在实践中是高效的: 它可以在O(log n)时间内做查找,插入和删除,这里的n 是树中元素的数目。

红黑树的性质

  1. 每个节点非红即黑;
  2. 根节点是黑的;
  3. 每个叶节点(叶节点即树尾端NULL指针或NULL节点)都是黑的;
  4. 如图所示,如果一个节点是红的,那么它的两儿子都是黑的;
  5. 对于任意节点而言,其到叶子点树NULL指针的每条路径都包含相同数目的黑节点。

_Rb_tree的结构图

_Rb_tree的结点结构

_Rb_tree_node的实现如下,几个实现也很简单,在_Rb_tree_node中定义了结点数据域,在基类_Rb_tree_node_base中分别定义了left、right、parent,另外还有一个表示颜色的标记常量。

另外在_Rb_tree_node_base实现了获取最大值与最小值的方法,根据红黑树的性质,获取最大值只需要在右子树上一直搜索,最小值在左子树上一直搜索。

  template<typename _Val>
    struct _Rb_tree_node : public _Rb_tree_node_base
    {
      typedef _Rb_tree_node<_Val>* _Link_type;

#if __cplusplus < 201103L
      _Val _M_value_field;

      _Val*
      _M_valptr()
      { return std::__addressof(_M_value_field); }

      const _Val*
      _M_valptr() const
      { return std::__addressof(_M_value_field); }
#else
      __gnu_cxx::__aligned_buffer<_Val> _M_storage;

      _Val*
      _M_valptr()
      { return _M_storage._M_ptr(); }

      const _Val*
      _M_valptr() const
      { return _M_storage._M_ptr(); }
#endif
    };

_Rb_tree_node_base的实现如下:

 enum _Rb_tree_color { _S_red = false, _S_black = true };

  struct _Rb_tree_node_base
  {
    typedef _Rb_tree_node_base* _Base_ptr;
    typedef const _Rb_tree_node_base* _Const_Base_ptr;

    _Rb_tree_color	_M_color;
    _Base_ptr		_M_parent;
    _Base_ptr		_M_left;
    _Base_ptr		_M_right;

    static _Base_ptr
    _S_minimum(_Base_ptr __x) _GLIBCXX_NOEXCEPT
    {
      while (__x->_M_left != 0) __x = __x->_M_left;
      return __x;
    }

    static _Const_Base_ptr
    _S_minimum(_Const_Base_ptr __x) _GLIBCXX_NOEXCEPT
    {
      while (__x->_M_left != 0) __x = __x->_M_left;
      return __x;
    }

    static _Base_ptr
    _S_maximum(_Base_ptr __x) _GLIBCXX_NOEXCEPT
    {
      while (__x->_M_right != 0) __x = __x->_M_right;
      return __x;
    }

    static _Const_Base_ptr
    _S_maximum(_Const_Base_ptr __x) _GLIBCXX_NOEXCEPT
    {
      while (__x->_M_right != 0) __x = __x->_M_right;
      return __x;
    }
  };

_Rb_tree的迭代器

_Rb_tree的迭代器首先包含了实现萃取机制的一些typedef,当然实现了一些操作符重载,主要来看下++ 和 -- 的重载。

  template<typename _Tp>
    struct _Rb_tree_iterator
    {
      typedef _Tp  value_type;
      typedef _Tp& reference;
      typedef _Tp* pointer;

      typedef bidirectional_iterator_tag iterator_category;
      typedef ptrdiff_t                  difference_type;

      typedef _Rb_tree_iterator<_Tp>        _Self;
      typedef _Rb_tree_node_base::_Base_ptr _Base_ptr;
      typedef _Rb_tree_node<_Tp>*           _Link_type;

      _Rb_tree_iterator() _GLIBCXX_NOEXCEPT
      : _M_node() { }

      explicit
      _Rb_tree_iterator(_Link_type __x) _GLIBCXX_NOEXCEPT
      : _M_node(__x) { }

      reference
      operator*() const _GLIBCXX_NOEXCEPT
      { return *static_cast<_Link_type>(_M_node)->_M_valptr(); }

      pointer
      operator->() const _GLIBCXX_NOEXCEPT
      { return static_cast<_Link_type> (_M_node)->_M_valptr(); }

      _Self&
      operator++() _GLIBCXX_NOEXCEPT
      {
	_M_node = _Rb_tree_increment(_M_node);
	return *this;
      }

      _Self
      operator++(int) _GLIBCXX_NOEXCEPT
      {
	_Self __tmp = *this;
	_M_node = _Rb_tree_increment(_M_node);
	return __tmp;
      }

      _Self&
      operator--() _GLIBCXX_NOEXCEPT
      {
	_M_node = _Rb_tree_decrement(_M_node);
	return *this;
      }

      _Self
      operator--(int) _GLIBCXX_NOEXCEPT
      {
	_Self __tmp = *this;
	_M_node = _Rb_tree_decrement(_M_node);
	return __tmp;
      }

      bool
      operator==(const _Self& __x) const _GLIBCXX_NOEXCEPT
      { return _M_node == __x._M_node; }

      bool
      operator!=(const _Self& __x) const _GLIBCXX_NOEXCEPT
      { return _M_node != __x._M_node; }

      _Base_ptr _M_node;
  };

前++的重载

_Self&
operator++() _GLIBCXX_NOEXCEPT
{
	_M_node = _Rb_tree_increment(_M_node);
	return *this;
}

前++的实现是通过_Rb_tree_increment(libstdc++-v3\src\c++98\tree.cc)来完成,其实现如下:

  _Rb_tree_node_base*
  _Rb_tree_increment(_Rb_tree_node_base* __x) throw ()
  {
    return local_Rb_tree_increment(__x);
  }
 static _Rb_tree_node_base*
  local_Rb_tree_increment(_Rb_tree_node_base* __x) throw ()
  {
/*
如果当前结点有右子节点,那么右子树的最左结点就是++所需的结点
*/
    if (__x->_M_right != 0) 
      {
        __x = __x->_M_right;
        while (__x->_M_left != 0)
          __x = __x->_M_left;
      }
    else 
      {
/*
1. 如果当前结点是左子树结点,那么++的结果就是当前结点的父结点
2. 如果当前结点是右子树结点,那么++的结果就是父结点的父结点
*/
        _Rb_tree_node_base* __y = __x->_M_parent;
        while (__x == __y->_M_right) 
          {
            __x = __y;
            __y = __y->_M_parent;
          }
        if (__x->_M_right != __y)
          __x = __y;
      }
    return __x;
  }

前--的重载

_Self&
operator--() _GLIBCXX_NOEXCEPT
{
	_M_node = _Rb_tree_decrement(_M_node);
	return *this;
}

_Rb_tree_decrement的实现:

  _Rb_tree_node_base*
  _Rb_tree_decrement(_Rb_tree_node_base* __x) throw ()
  {
    return local_Rb_tree_decrement(__x);
  }
static _Rb_tree_node_base*
  local_Rb_tree_decrement(_Rb_tree_node_base* __x) throw ()
  {
/*
从上面的结构图,我们知道,header是红色,并且parent为root,而root的parent为header
*/
    if (__x->_M_color == _S_red 
        && __x->_M_parent->_M_parent == __x)
      __x = __x->_M_right;
    else if (__x->_M_left != 0) 
      {/*左子树的最大值*/
        _Rb_tree_node_base* __y = __x->_M_left;
        while (__y->_M_right != 0)
          __y = __y->_M_right;
        __x = __y;
      }
    else 
      {
        _Rb_tree_node_base* __y = __x->_M_parent;
        while (__x == __y->_M_left) 
          {
            __x = __y;
            __y = __y->_M_parent;
          }
        __x = __y;
      }
    return __x;
  }

_Rb_tree的成员构成

通过上述的类结构图可知,_Rb_tree 的具体实现是在 _Rb_tree_impl中,主要定义了三个成员变量:

  •  _Key_compare        _M_key_compare;
  •  _Rb_tree_node_base     _M_header;
  •  size_type         _M_node_count; 

_Rb_tree_impl还负责红黑树的初始化操作与内存管理。

template<typename _Key_compare, 
	       bool _Is_pod_comparator = __is_pod(_Key_compare)>
        struct _Rb_tree_impl : public _Node_allocator
        {
	  _Key_compare		_M_key_compare;
	  _Rb_tree_node_base 	_M_header;
	  size_type 		_M_node_count; // Keeps track of size of tree.

	  _Rb_tree_impl()
	  : _Node_allocator(), _M_key_compare(), _M_header(),
	    _M_node_count(0)
	  { _M_initialize(); }

	  _Rb_tree_impl(const _Key_compare& __comp, const _Node_allocator& __a)
	  : _Node_allocator(__a), _M_key_compare(__comp), _M_header(),
	    _M_node_count(0)
	  { _M_initialize(); }

#if __cplusplus >= 201103L
	  _Rb_tree_impl(const _Key_compare& __comp, _Node_allocator&& __a)
	  : _Node_allocator(std::move(__a)), _M_key_compare(__comp),
	    _M_header(), _M_node_count(0)
	  { _M_initialize(); }
#endif

	private:
	  void
	  _M_initialize()
	  {
	    this->_M_header._M_color = _S_red;
	    this->_M_header._M_parent = 0;
	    this->_M_header._M_left = &this->_M_header;
	    this->_M_header._M_right = &this->_M_header;
	  }	    
	};

_Rb_tree的内存管理

通过获取_M_impl的构造器来完成节点的创建和销毁,这里和我们之前看到的是一致的,内存分配和构造是分开的,在_M_create_node中,先通过构造器去分配,然后通过construct来构造。

  _Node_allocator&
      _M_get_Node_allocator() _GLIBCXX_NOEXCEPT
      { return *static_cast<_Node_allocator*>(&this->_M_impl); }
      
      const _Node_allocator&
      _M_get_Node_allocator() const _GLIBCXX_NOEXCEPT
      { return *static_cast<const _Node_allocator*>(&this->_M_impl); }

      allocator_type
      get_allocator() const _GLIBCXX_NOEXCEPT
      { return allocator_type(_M_get_Node_allocator()); }

    protected:
      _Link_type
      _M_get_node()
      { return _Alloc_traits::allocate(_M_get_Node_allocator(), 1); }

      void
      _M_put_node(_Link_type __p) _GLIBCXX_NOEXCEPT
      { _Alloc_traits::deallocate(_M_get_Node_allocator(), __p, 1); }

#if __cplusplus < 201103L
      _Link_type
      _M_create_node(const value_type& __x)
      {
	_Link_type __tmp = _M_get_node();
	__try
	  { get_allocator().construct(__tmp->_M_valptr(), __x); }
	__catch(...)
	  {
	    _M_put_node(__tmp);
	    __throw_exception_again;
	  }
	return __tmp;
      }

      void
      _M_destroy_node(_Link_type __p)
      {
	get_allocator().destroy(__p->_M_valptr());
	_M_put_node(__p);
      }
#else
      template<typename... _Args>
        _Link_type
        _M_create_node(_Args&&... __args)
	{
	  _Link_type __tmp = _M_get_node();
	  __try
	    {
	      ::new(__tmp) _Rb_tree_node<_Val>;
	      _Alloc_traits::construct(_M_get_Node_allocator(),
				       __tmp->_M_valptr(),
				       std::forward<_Args>(__args)...);
	    }
	  __catch(...)
	    {
	      _M_put_node(__tmp);
	      __throw_exception_again;
	    }
	  return __tmp;
	}

      void
      _M_destroy_node(_Link_type __p) noexcept
      {
	_Alloc_traits::destroy(_M_get_Node_allocator(), __p->_M_valptr());
	__p->~_Rb_tree_node<_Val>();
	_M_put_node(__p);
      }
#endif

      _Link_type
      _M_clone_node(_Const_Link_type __x)
      {
	_Link_type __tmp = _M_create_node(*__x->_M_valptr());
	__tmp->_M_color = __x->_M_color;
	__tmp->_M_left = 0;
	__tmp->_M_right = 0;
	return __tmp;
      }

_Rb_tree的元素操作

在看源码之前先看下以下几个接口:

      _Link_type
      _M_begin() _GLIBCXX_NOEXCEPT
      { return static_cast<_Link_type>(this->_M_impl._M_header._M_parent); }

      _Const_Link_type
      _M_begin() const _GLIBCXX_NOEXCEPT
      {
	return static_cast<_Const_Link_type>
	  (this->_M_impl._M_header._M_parent);
      }

      _Link_type
      _M_end() _GLIBCXX_NOEXCEPT
      { return static_cast<_Link_type>(&this->_M_impl._M_header); }

      _Const_Link_type
      _M_end() const _GLIBCXX_NOEXCEPT
      { return static_cast<_Const_Link_type>(&this->_M_impl._M_header); }

_M_insert_equal的元素插入操作

  template<typename _Key, typename _Val, typename _KeyOfValue,
           typename _Compare, typename _Alloc>
#if __cplusplus >= 201103L
    template<typename _Arg>
#endif
    typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
    _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
#if __cplusplus >= 201103L
    _M_insert_equal(_Arg&& __v)
#else
    _M_insert_equal(const _Val& __v)
#endif
    {
      pair<_Base_ptr, _Base_ptr> __res
	= _M_get_insert_equal_pos(_KeyOfValue()(__v));
      return _M_insert_(__res.first, __res.second, _GLIBCXX_FORWARD(_Arg, __v));
    }

上述代码中调用了_M_get_insert_equal_pos,其中的实现是从根节点开始,往下寻找适当的插入点:

  template<typename _Key, typename _Val, typename _KeyOfValue,
           typename _Compare, typename _Alloc>
    pair<typename _Rb_tree<_Key, _Val, _KeyOfValue,
			   _Compare, _Alloc>::_Base_ptr,
	 typename _Rb_tree<_Key, _Val, _KeyOfValue,
			   _Compare, _Alloc>::_Base_ptr>
    _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
    _M_get_insert_equal_pos(const key_type& __k)
    {
      typedef pair<_Base_ptr, _Base_ptr> _Res;
      _Link_type __x = _M_begin();
      _Link_type __y = _M_end();
      while (__x != 0)//寻找合适的插入点
	{
	  __y = __x;
	  __x = _M_impl._M_key_compare(__k, _S_key(__x)) ?
	        _S_left(__x) : _S_right(__x);//遇大往左,遇小往右
	}
      return _Res(__x, __y);//x为插入点,y为插入点的父结点
    }

_M_insert_unique的元素插入操作

  template<typename _Key, typename _Val, typename _KeyOfValue,
           typename _Compare, typename _Alloc>
#if __cplusplus >= 201103L
    template<typename _Arg>
#endif
    pair<typename _Rb_tree<_Key, _Val, _KeyOfValue,
			   _Compare, _Alloc>::iterator, bool>
    _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
#if __cplusplus >= 201103L
    _M_insert_unique(_Arg&& __v)
#else
    _M_insert_unique(const _Val& __v)
#endif
    {
      typedef pair<iterator, bool> _Res;
      pair<_Base_ptr, _Base_ptr> __res
	= _M_get_insert_unique_pos(_KeyOfValue()(__v));

      if (__res.second)
	return _Res(_M_insert_(__res.first, __res.second,
			       _GLIBCXX_FORWARD(_Arg, __v)),
		    true);

      return _Res(iterator(static_cast<_Link_type>(__res.first)), false);
    }

看下_M_get_insert_unique_pos的主要实现:

1. 插入新值,不允许重复,若重复插入无效
2. 返回值是个pair:第一个元素是rb-tree迭代器指向新增结点;第二个表示成功与否

 template<typename _Key, typename _Val, typename _KeyOfValue,
           typename _Compare, typename _Alloc>
    pair<typename _Rb_tree<_Key, _Val, _KeyOfValue,
			   _Compare, _Alloc>::_Base_ptr,
	 typename _Rb_tree<_Key, _Val, _KeyOfValue,
			   _Compare, _Alloc>::_Base_ptr>
    _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
    _M_get_insert_unique_pos(const key_type& __k)
    {
      typedef pair<_Base_ptr, _Base_ptr> _Res;
      _Link_type __x = _M_begin();
      _Link_type __y = _M_end();
      bool __comp = true;
      while (__x != 0)//从根节点开始,寻找合适的插入点
	{
	  __y = __x;
	  __comp = _M_impl._M_key_compare(__k, _S_key(__x));
	  __x = __comp ? _S_left(__x) : _S_right(__x);
	}
      iterator __j = iterator(__y);//指向插入点的父结点
      if (__comp)//comp为true,说明插在左侧
	{
	  if (__j == begin())//插入结点的父结点为最左侧结点
	    return _Res(__x, __y);
	  else
	    --__j;
	}
//新键值不与既有结点重复,于是执行安插
      if (_M_impl._M_key_compare(_S_key(__j._M_node), __k))
	return _Res(__x, __y);
      return _Res(__j._M_node, 0);
    }

_M_insert_的插入操作

__x,__p,__v分别为插入点,插入点父结点,以及新值。

 template<typename _Key, typename _Val, typename _KeyOfValue,
           typename _Compare, typename _Alloc>
#if __cplusplus >= 201103L
    template<typename _Arg>
#endif
    typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
    _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
#if __cplusplus >= 201103L
    _M_insert_(_Base_ptr __x, _Base_ptr __p, _Arg&& __v)
#else
    _M_insert_(_Base_ptr __x, _Base_ptr __p, const _Val& __v)
#endif
    {
      bool __insert_left = (__x != 0 || __p == _M_end()
			    || _M_impl._M_key_compare(_KeyOfValue()(__v),
						      _S_key(__p)));

      _Link_type __z = _M_create_node(_GLIBCXX_FORWARD(_Arg, __v));

      _Rb_tree_insert_and_rebalance(__insert_left, __z, __p,
				    this->_M_impl._M_header);
      ++_M_impl._M_node_count;
      return iterator(__z);
    }

_Rb_tree_insert_and_rebalance这个函数才是实现的重点,在这里会更新插入结点之后的leftmost、rightmost的更新;以及如果不满足红黑树的性质,就进行调整。

在这里需要结合:数据结构与算法——红黑树(Red Black Tree)中的几种插入情况。

  void 
  _Rb_tree_insert_and_rebalance(const bool          __insert_left,
                                _Rb_tree_node_base* __x,
                                _Rb_tree_node_base* __p,
                                _Rb_tree_node_base& __header) throw ()
  {
    _Rb_tree_node_base *& __root = __header._M_parent;

    // Initialize fields in new node to insert.
    __x->_M_parent = __p;
    __x->_M_left = 0;
    __x->_M_right = 0;
    __x->_M_color = _S_red;

    // Insert.
    // Make new node child of parent and maintain root, leftmost and
    // rightmost nodes.
    // N.B. First node is always inserted left.
    if (__insert_left)
      {
        __p->_M_left = __x; // also makes leftmost = __x when __p == &__header

        if (__p == &__header)
        {
            __header._M_parent = __x;
            __header._M_right = __x;
        }
        else if (__p == __header._M_left)
          __header._M_left = __x; // maintain leftmost pointing to min node
      }
    else
      {
        __p->_M_right = __x;

        if (__p == __header._M_right)
          __header._M_right = __x; // maintain rightmost pointing to max node
      }
    // Rebalance.
    while (__x != __root 
	   && __x->_M_parent->_M_color == _S_red) //父结点为红
      {
	_Rb_tree_node_base* const __xpp = __x->_M_parent->_M_parent;//获取祖父结点

	if (__x->_M_parent == __xpp->_M_left) //父结点为祖父结点的左子结点
	  {
	    _Rb_tree_node_base* const __y = __xpp->_M_right;
	    if (__y && __y->_M_color == _S_red) //对应状况1
	      {
		__x->_M_parent->_M_color = _S_black;
		__y->_M_color = _S_black;
		__xpp->_M_color = _S_red;
		__x = __xpp;
	      }
	    else 
	      {//无伯父结点
		if (__x == __x->_M_parent->_M_right) //新结点为父结点的右子结点,对应状况2
		  {
		    __x = __x->_M_parent;
		    local_Rb_tree_rotate_left(__x, __root);
		  }
		__x->_M_parent->_M_color = _S_black;//经过左旋之后,对应状况3,需要再做一次右旋
		__xpp->_M_color = _S_red;
		local_Rb_tree_rotate_right(__xpp, __root);
	      }
	  }
	else 
	  {
	    _Rb_tree_node_base* const __y = __xpp->_M_left;
	    if (__y && __y->_M_color == _S_red) //类似于状况1,只不过为祖父结点的右子结点
	      {
		__x->_M_parent->_M_color = _S_black;
		__y->_M_color = _S_black;
		__xpp->_M_color = _S_red;
		__x = __xpp;
	      }
	    else 
	      {
		if (__x == __x->_M_parent->_M_left) //类似于2,3,只不过是做相反的旋转
		  {
		    __x = __x->_M_parent;
		    local_Rb_tree_rotate_right(__x, __root);
		  }
		__x->_M_parent->_M_color = _S_black;
		__xpp->_M_color = _S_red;
		local_Rb_tree_rotate_left(__xpp, __root);
	      }
	  }
      }
    __root->_M_color = _S_black;
  }

状况1:

此时将当前结点的父结点和叔叔节点涂黑,祖父结点涂红;并把当前结点指向祖父结点,从新的当前结点重新开始计算。

状况2:

当前结点的父结点作为新的当前结点,以新当前结点为支点进行左旋。

状况3:

此时将父结点变为黑色,祖父结点变为红色,祖父结点作为支点进行右旋。

右旋的实现local_Rb_tree_rotate_right:

  static void 
  local_Rb_tree_rotate_right(_Rb_tree_node_base* const __x, 
			     _Rb_tree_node_base*& __root)
  {
    _Rb_tree_node_base* const __y = __x->_M_left;

    __x->_M_left = __y->_M_right;
    if (__y->_M_right != 0)
      __y->_M_right->_M_parent = __x;
    __y->_M_parent = __x->_M_parent;

    if (__x == __root)
      __root = __y;
    else if (__x == __x->_M_parent->_M_right)
      __x->_M_parent->_M_right = __y;
    else
      __x->_M_parent->_M_left = __y;
    __y->_M_right = __x;
    __x->_M_parent = __y;
  }

旋转

左旋的实现local_Rb_tree_rotate_left:

  static void 
  local_Rb_tree_rotate_left(_Rb_tree_node_base* const __x, 
		             _Rb_tree_node_base*& __root)
  {
    _Rb_tree_node_base* const __y = __x->_M_right;

    __x->_M_right = __y->_M_left;
    if (__y->_M_left !=0)
      __y->_M_left->_M_parent = __x;
    __y->_M_parent = __x->_M_parent;
    
    if (__x == __root)
      __root = __y;
    else if (__x == __x->_M_parent->_M_left)
      __x->_M_parent->_M_left = __y;
    else
      __x->_M_parent->_M_right = __y;
    __y->_M_left = __x;
    __x->_M_parent = __y;
  }

 

以上参考:

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页