LeetCode 33. Search in Rotated Sorted Array (二分查找)

Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.

(i.e., [0,1,2,4,5,6,7] might become [4,5,6,7,0,1,2]).

You are given a target value to search. If found in the array return its index, otherwise return -1.

You may assume no duplicate exists in the array.

Your algorithm's runtime complexity must be in the order of O(log n).

Example 1:

Input: nums = [ 4, 5, 6, 7, 0, 1, 2 ], target = 0

Output: 4


Example2:

Input: nums = [ 4, 5, 6, 7, 0, 1, 2 ], target = 3

Output: -1

这道题还是二分法,但是有6种情况,最本来的二分法是只用计算middle的值匹不匹配即可以,但是因为我们判断的条件不单单有middle,还有nums[begin], 所以判断的时候要判断两个(至少我是这么做的)。

 int search(vector<int>& nums, int target) {
        int begin = 0, end = nums.size() - 1;
        int res = -1;
        while(begin <= end){
            int middle = (begin + end)/2;
            int firstNum = nums[begin];
            int middleNum = nums[middle];
            if(middleNum == target){
                res = middle;
                break;
            }
            if(target == nums[begin]){
                res = begin;
                break;
            }
            if(firstNum <= middleNum){
                if(target < firstNum || target > middleNum)
                    begin = middle + 1;
                else
                    end = middle -1;
            }
            if(firstNum > middleNum){
                if(target > firstNum || target < middleNum)
                    end = middle - 1;
                else 
                    begin = middle + 1;
            }
        }   
            
        return res;
    }

但是!讨论区的大牛就是还是用的一个判断条件,我觉得很厉害啊,反正我是写不出这种代码的:(虽然本质上解题思路还是一样的,但是人家的异或真的用的好厉害啊,嗷嗷我什么时候才可以这么厉害啊QAQ)

int search(vector<int>& nums, int target) {
    int lo = 0, hi = int(nums.size()) - 1;
    while (lo < hi) {
        int mid = (lo + hi) / 2;
        if ((nums[0] > target) ^ (nums[0] > nums[mid]) ^ (target > nums[mid]))
            lo = mid + 1;
        else
            hi = mid;
    }
    return lo == hi && nums[lo] == target ? lo : -1;
}

Example 2:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值