动态规划

给定两个字符串A和B,返回两个字符串的最长公共子序列的长度。例如,A=”1A2C3D4B56”,B=”B1D23CA45B6A”,”123456”或者”12C4B6”都是最长公共子序列。

输入输出:给定两个字符串A和B,同时给定两个串的长度n和m,请返回最长公共子序列的长度。保证两串长度均小于等于300。

测试样例:
“1A2C3D4B56”,10,”B1D23CA45B6A”,12
返回:6

代码实现:

public class LCS {
    public int findLCS(String A, int n, String B, int m) {
        // write code here
        if(n<0||m<0||A==null||B==null){
            return 0;
        }

        int dp [][] = new int[n][m];
        char a[] = A.toCharArray();
        char b[] = B.toCharArray();

        dp[0][0]=a[0]==b[0]?1:0;

        for(int  i = 1 ;i < n;i++){
            if( a[i]==b[0] ){
                dp[i][0] =1 ;
            }else{
                dp[i][0] =dp[i-1][0];
            }
        }

        for(int  i =1  ;i < m;i++){
            if( b[i]==a[0] ){
                dp[0][i] =1 ;
            }else{
                dp[0][i] =dp[0][i-1];
            }
        }

        for(int i =1;i<n;i++){
            for(int j =1;j<m;j++)
            {
                if(a[i]==b[j]){
                    dp[i][j] = dp[i-1][j-1]+1;
                }else{
                    dp[i][j] = Math.max(dp[i][j-1], dp[i-1][j]);
                }
            }

        }


        return dp[n-1][m-1];
    }
}
变形:

给出两个字符串(可能包含空格),找出其中最长的公共连续子串,输出其长度。

思路:

DP问题,利用空间换时间,时间复杂度O(NM),空间O(NM)
思想:
创建一张二维表,本来这张表是用来存储字符A[i]和B[j]是否相等然后将表中(i,j)位置置为1。
遍历结束后,计算所有的对角线上连续1的个数,取最大值就是结果。但是现在,换种方法,
遍历的同时,计算当前斜对角的值,然后用一个变量res记录最大的值即可。
它的公式为:如果A[i - 1] == B[j - 1],那么dp[i][j] = dp[i - 1][j - 1] + 1;
其中dp[0][…]和dp[…][0]都是0,这是初始状态。
例子:
字符串A:abcde
字符串B:abgde
表1
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
这个不可以直接得到结果,需要再遍历一次计算。

表2
0 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 2
这个可以直接得到结果,不需要再遍历一次计算。

代码实现

import java.util.*;

public class LCS {
    public int findLCS(String A, int n, String B, int m) {
        // write code here
        if(n<0||m<0||A==null||B==null){
            return 0;
        }

        int dp [][] = new int[n][m];
        char a[] = A.toCharArray();
        char b[] = B.toCharArray();

        int res = 0;

        for(int i =0;i<n;i++){
            for(int j =0;j<m;j++)
            {
                if(a[i]==b[j]){
                    dp[i][j] = dp[i-1][j-1]+1;
                    res = Math.max(res,dp[i][j] = dp[i - 1][j - 1] + 1);
                }
            }

        }


        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值