给定两个字符串A和B,返回两个字符串的最长公共子序列的长度。例如,A=”1A2C3D4B56”,B=”B1D23CA45B6A”,”123456”或者”12C4B6”都是最长公共子序列。
输入输出:给定两个字符串A和B,同时给定两个串的长度n和m,请返回最长公共子序列的长度。保证两串长度均小于等于300。
测试样例:
“1A2C3D4B56”,10,”B1D23CA45B6A”,12
返回:6
代码实现:
public class LCS {
public int findLCS(String A, int n, String B, int m) {
// write code here
if(n<0||m<0||A==null||B==null){
return 0;
}
int dp [][] = new int[n][m];
char a[] = A.toCharArray();
char b[] = B.toCharArray();
dp[0][0]=a[0]==b[0]?1:0;
for(int i = 1 ;i < n;i++){
if( a[i]==b[0] ){
dp[i][0] =1 ;
}else{
dp[i][0] =dp[i-1][0];
}
}
for(int i =1 ;i < m;i++){
if( b[i]==a[0] ){
dp[0][i] =1 ;
}else{
dp[0][i] =dp[0][i-1];
}
}
for(int i =1;i<n;i++){
for(int j =1;j<m;j++)
{
if(a[i]==b[j]){
dp[i][j] = dp[i-1][j-1]+1;
}else{
dp[i][j] = Math.max(dp[i][j-1], dp[i-1][j]);
}
}
}
return dp[n-1][m-1];
}
}
变形:
给出两个字符串(可能包含空格),找出其中最长的公共连续子串,输出其长度。
思路:
DP问题,利用空间换时间,时间复杂度O(NM),空间O(NM)
思想:
创建一张二维表,本来这张表是用来存储字符A[i]和B[j]是否相等然后将表中(i,j)位置置为1。
遍历结束后,计算所有的对角线上连续1的个数,取最大值就是结果。但是现在,换种方法,
遍历的同时,计算当前斜对角的值,然后用一个变量res记录最大的值即可。
它的公式为:如果A[i - 1] == B[j - 1],那么dp[i][j] = dp[i - 1][j - 1] + 1;
其中dp[0][…]和dp[…][0]都是0,这是初始状态。
例子:
字符串A:abcde
字符串B:abgde
表1
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
这个不可以直接得到结果,需要再遍历一次计算。表2
0 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 2
这个可以直接得到结果,不需要再遍历一次计算。
代码实现
import java.util.*;
public class LCS {
public int findLCS(String A, int n, String B, int m) {
// write code here
if(n<0||m<0||A==null||B==null){
return 0;
}
int dp [][] = new int[n][m];
char a[] = A.toCharArray();
char b[] = B.toCharArray();
int res = 0;
for(int i =0;i<n;i++){
for(int j =0;j<m;j++)
{
if(a[i]==b[j]){
dp[i][j] = dp[i-1][j-1]+1;
res = Math.max(res,dp[i][j] = dp[i - 1][j - 1] + 1);
}
}
}
return res;
}
}