最长公共子序列问题:给定两个序列.X= {x1,x2,…xm}和Y{y1,y2,…yn}.找出X和Y的最长公共子序列。
子序列:一个给定序列的子序列是该序列中删除若干个元素后得到的序列
eg.序列Z{B,C,D,B}是序列X{A,B,C,B,D,A,B} 的子序列,相应的递增下标序列为{2,3,5,7}
解题步骤:
-
具有最优子结构性质
-
递归结构
c [ i ] [ j ] = { 0 i , j = 0 c [ i − 1 ] [ j − 1 ] + 1 i , j > 0 ; x i = y j m a x { c [ i ] [ j − 1 ] , c [ i − 1 ] [ j ] } i , j > 0 ; x i ! = y j c[i][j]=\left\{ \begin{aligned} 0 & &i,j=0\\ c[i-1][j-1]+1& &i,j>0;x_i=y_j\\ max\{c[i][j-1],c[i-1][j]\}& &i,j>0;x_i!=y_j \end{aligned} \right. c[i][j]=⎩⎪⎨⎪⎧0c[i−1][j−1]+1max{c[i][j−1],c[i−1][j]}i,j=0i,j>0;xi=yji,j>0;xi!=yj -
计算最优值
输出两个数组c和b。其中c[i][j]存储X和Y的最长公共子序列的长度,b[i][j]记录c[i][j]的值是由哪一个子问题的解得到的,这在构造最长公共子序列时要用到。问题的最优值.即X和Y的最长公共子序列的长度记录于c[m][n]中。
-
构造最长公共子序列:用数组b构造
运算过程:
初始化0行0列均为0,依次按行进行按照递归方程计算比较。
如果对应元素相等,则斜对角线值+1
如果不相等,如果 c[i - 1][j] >= c[i][j - 1],则c[i][j]=c[i - 1][j],否则等于 c[i][j - 1]
最终结果:在m行n列的位置回溯得到最终的最大子序列
时间复杂度:o(mn)
def LCSLength(m, n, x, y, c, b):
# m x数组长度
# n y数组长度
# x 数组
# y 数组
# c 动态规划记录数组
# b 标识数组
# 初始化
for i in range(m):
c[i][0] = 0
for i in range(n):
c[0][i] = 0
for i in range(m):
for j in range(n):
if x[i] == y[j]:
c[i][j] = c[i - 1][j - 1] + 1 # 斜对角加1
b[i][j] = 1
elif c[i - 1][j] >= c[i][j - 1]:
c[i][j] = c[i - 1][j] # 该点上一行元素
b[i][j] = 2
else:
c[i][j] = c[i][j - 1]
b[i][j] = 3
print(c)
if __name__ == '__main__':
b = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
c = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
LCSLength(3, 4, ['a', 'c', 'd'], ['a', 'd', 'b', 'a'], c, b)