最长公共子序列

最长公共子序列问题:给定两个序列.X= {x1,x2,…xm}和Y{y1,y2,…yn}.找出X和Y的最长公共子序列。

子序列:一个给定序列的子序列是该序列中删除若干个元素后得到的序列

eg.序列Z{B,C,D,B}是序列X{A,B,C,B,D,A,B} 的子序列,相应的递增下标序列为{2,3,5,7}

解题步骤:

  1. 具有最优子结构性质

  2. 递归结构
    c [ i ] [ j ] = { 0 i , j = 0 c [ i − 1 ] [ j − 1 ] + 1 i , j > 0 ; x i = y j m a x { c [ i ] [ j − 1 ] , c [ i − 1 ] [ j ] } i , j > 0 ; x i ! = y j c[i][j]=\left\{ \begin{aligned} 0 & &i,j=0\\ c[i-1][j-1]+1& &i,j>0;x_i=y_j\\ max\{c[i][j-1],c[i-1][j]\}& &i,j>0;x_i!=y_j \end{aligned} \right. c[i][j]=0c[i1][j1]+1max{c[i][j1],c[i1][j]}i,j=0i,j>0;xi=yji,j>0;xi!=yj

  3. 计算最优值

    输出两个数组c和b。其中c[i][j]存储X和Y的最长公共子序列的长度,b[i][j]记录c[i][j]的值是由哪一个子问题的解得到的,这在构造最长公共子序列时要用到。问题的最优值.即X和Y的最长公共子序列的长度记录于c[m][n]中。

  4. 构造最长公共子序列:用数组b构造

运算过程:

初始化0行0列均为0,依次按行进行按照递归方程计算比较。

如果对应元素相等,则斜对角线值+1

如果不相等,如果 c[i - 1][j] >= c[i][j - 1],则c[i][j]=c[i - 1][j],否则等于 c[i][j - 1]

最终结果:在m行n列的位置回溯得到最终的最大子序列

时间复杂度:o(mn)


def LCSLength(m, n, x, y, c, b):
    # m x数组长度
    # n y数组长度
    # x 数组
    # y 数组
    # c 动态规划记录数组
    # b 标识数组
    # 初始化
    for i in range(m):
        c[i][0] = 0
    for i in range(n):
        c[0][i] = 0
    for i in range(m):
        for j in range(n):
            if x[i] == y[j]:
                c[i][j] = c[i - 1][j - 1] + 1  # 斜对角加1
                b[i][j] = 1
            elif c[i - 1][j] >= c[i][j - 1]:
                c[i][j] = c[i - 1][j]  # 该点上一行元素
                b[i][j] = 2
            else:
                c[i][j] = c[i][j - 1]
                b[i][j] = 3
    print(c)


if __name__ == '__main__':
    b = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
    c = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
    LCSLength(3, 4, ['a', 'c', 'd'], ['a', 'd', 'b', 'a'], c, b)
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值