持续整理和解读风控反作弊方面的顶会论文,可以关注、收藏。
评选标准:
- 有代码、方便复现的论文优先考虑
- 对账号、营销薅羊毛、支付风控、广告反作弊等场景问题有直接启发的论文优先考虑
名称 | 方向 | 论文数 | 有代码论文数 |
---|---|---|---|
WWW | - | 16 | 7 |
KDD | Data Mining | 8 | 3 |
CIKM | Data Mining | 8 | 5 |
AAAI | Artificial Intelligence | 5 | 4 |
ICDM | Data Mining | 3 | 3 |
IJCAI | Artificial Intelligence | 1 | |
WSDM | - | 1 | |
VLDB | - | 1 | |
WSDM | - | 1 |
论文解读:
从虚假点赞到恶意评论:FRAUDAR算法如何一路斩妖除魔?
SliceNDice - 2024年3月
FlowScope - 2024年4月
WWW
- SliceNDice: Mining Suspicious Multi-attribute Entity Groups with Multi-view Graphs
算法原理:捕捉具备大量共同属性的用户,比如在同一时间和地点创建的帐户、宣传相同言论和转发类似文章的账户。(IEEE DSAA (2019))
输入:实体+属性1…+属性N
算法功能:根据共同属性构造边,合并各属性构造的子图,形成Multi-View Graph.随后挖掘异常关联子图(“dense” subnetwork).
实验数据集大小:Snapchat advertiser platform(23W实体 × 12属性),发现2435异常实体,precision 89%
- Spam Review Detection with Graph Convolutional Networks
算法原理:这篇论文中,作者构建了两种图结构:异构图Xianyu Graph和同构图Comment Graph。
输入:异构图 Xianyu Graph:
节点由用户(U)、物品(I)和评论(E)组成。
同构图 Comment Graph:节点由评论(E)组成。
边表示相似的评论。通过构建近似KNN图算法,找到每个评论的K个最近邻居,从而形成同构图。
算法功能:
使用异构GCN对Xianyu Graph进行embedding
采用归纳GCN对Comment Graph进行embedding
采用TextCNN对评论文本进行embedding
一起输入到GCN-based Anti-Spam(GAS)模型,进行有监督分类。
- Heterogeneous Graph Neural Networks for Malicious Account Detection
算法功能:考虑设备聚合和活动聚合,构建图结构embedding进行分类。本质是图卷积网络的一种变体
效果:GBDT+Graph 方法与 GBDT+Node2Vec 方法相比效果相似,而 GCN 的效果优于 GBDT+Graph 和 GBDT+Node2Vec。
作者提出的 GEM 方法在多种方面都优于 GCN,因为它处理了异构设备类型,而 GCN 只能处理同质图,无法区分图中不同类型的节点。
GEM 还使用每种节点类型的聚合操作,而不是标准化操作,因此更好地模拟了底层的聚合模式。
- FlowScope: Spotting Money Laundering Based