风控反作弊AI顶会论文梳理:破解欺诈行为的秘密

持续整理和解读风控反作弊方面的顶会论文,可以关注、收藏。
评选标准:

  1. 有代码、方便复现的论文优先考虑
  2. 对账号、营销薅羊毛、支付风控、广告反作弊等场景问题有直接启发的论文优先考虑
名称 方向 论文数 有代码论文数
WWW - 16 7
KDD Data Mining 8 3
CIKM Data Mining 8 5
AAAI Artificial Intelligence 5 4
ICDM Data Mining 3 3
IJCAI Artificial Intelligence 1
WSDM - 1
VLDB - 1
WSDM - 1

论文解读:
从虚假点赞到恶意评论:FRAUDAR算法如何一路斩妖除魔?
SliceNDice - 2024年3月
FlowScope - 2024年4月

WWW

  1. SliceNDice: Mining Suspicious Multi-attribute Entity Groups with Multi-view Graphs

算法原理:捕捉具备大量共同属性的用户,比如在同一时间和地点创建的帐户、宣传相同言论和转发类似文章的账户。(IEEE DSAA (2019))
输入:实体+属性1…+属性N
算法功能:根据共同属性构造边,合并各属性构造的子图,形成Multi-View Graph.随后挖掘异常关联子图(“dense” subnetwork).
实验数据集大小:Snapchat advertiser platform(23W实体 × 12属性),发现2435异常实体,precision 89%

  1. Spam Review Detection with Graph Convolutional Networks

算法原理:这篇论文中,作者构建了两种图结构:异构图Xianyu Graph和同构图Comment Graph。
输入:异构图 Xianyu Graph:
节点由用户(U)、物品(I)和评论(E)组成。
同构图 Comment Graph:节点由评论(E)组成。
表示相似的评论。通过构建近似KNN图算法,找到每个评论的K个最近邻居,从而形成同构图。
算法功能
使用异构GCN对Xianyu Graph进行embedding
采用归纳GCN对Comment Graph进行embedding
采用TextCNN对评论文本进行embedding
一起输入到GCN-based Anti-Spam(GAS)模型,进行有监督分类。

  1. Heterogeneous Graph Neural Networks for Malicious Account Detection

算法功能:考虑设备聚合和活动聚合,构建图结构embedding进行分类。本质是图卷积网络的一种变体
效果:GBDT+Graph 方法与 GBDT+Node2Vec 方法相比效果相似,而 GCN 的效果优于 GBDT+Graph 和 GBDT+Node2Vec。
作者提出的 GEM 方法在多种方面都优于 GCN,因为它处理了异构设备类型,而 GCN 只能处理同质图,无法区分图中不同类型的节点。
GEM 还使用每种节点类型的聚合操作,而不是标准化操作,因此更好地模拟了底层的聚合模式。

  1. FlowScope: Spotting Money Laundering Based
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值