题目链接:
http://acm.nyist.net/JudgeOnline/problem.php?pid=23
描述
一天,TT在寝室闲着无聊,和同寝的人玩起了取石子游戏,而由于条件有限,他/她们是用旺仔小馒头当作石子。游戏的规则是这样的。设有一堆石子,数量为N(1≤N≤1000000),两个人轮番取出其中的若干个,每次最多取M个(1≤M&le1000000),最先把石子取完者胜利。我们知道,TT和他/她的室友都十分的聪明,那么如果是TT先取,他/她会取得游戏的胜利么?
输入
第一行是一个正整数n表示有n组测试数据
输入有不到1000组数据,每组数据一行,有两个数N和M,之间用空格分隔。
输出
对于每组数据,输出一行。如果先取的TT可以赢得游戏,则输出“Win”,否则输出“Lose”(引号不用输出)
样例输入
2 1000 1 1 100 |
样例输出
Lose Win |
算法思想:
这道题可以这样考虑,TT假设第一次取为X个石子,另一个同学假设叫YY取a个石子,TT每次可以取(m + 1) - a个石子,因为a的范围在1~m之间,故(m + 1) - a的范围也在1~m之间,所以这样取是合法的。当TT是最后取完石子,表示TT胜利。也就是表明N %(M + 1) != 0时,TT胜利。
证明上面的取法是最优的,由过程可知,TT这样的取法结果是不受YY取法的影响,故是最优的。他的每一步都是依据YY的取法来选择下一步来取多少个石子。
源代码
#include <iostream>
using namespace std;
int main()
{
int n,N,M;
cin>>n;
while(n--)
{
cin>>N>>M;
if(M >= N)
cout<<"Win"<<endl;
else
{
if(N % (M + 1) == 0)
cout<<"Lose"<<endl;
else
cout<<"Win"<<endl;
}
}
return 0;
}
算法复杂度:
由源代码可知,算法的空间复杂度为O(1),时间复杂度为O(1)。