题目23:取石子(一)

70 篇文章 1 订阅

题目链接:

http://acm.nyist.net/JudgeOnline/problem.php?pid=23

描述

一天,TT在寝室闲着无聊,和同寝的人玩起了取石子游戏,而由于条件有限,他/她们是用旺仔小馒头当作石子。游戏的规则是这样的。设有一堆石子,数量为N(1≤N≤1000000),两个人轮番取出其中的若干个,每次最多取M个(1≤M&le1000000),最先把石子取完者胜利。我们知道,TT和他/她的室友都十分的聪明,那么如果是TT先取,他/她会取得游戏的胜利么?

输入

第一行是一个正整数n表示有n组测试数据
输入有不到1000组数据,每组数据一行,有两个数N和M,之间用空格分隔。

输出

对于每组数据,输出一行。如果先取的TT可以赢得游戏,则输出“Win”,否则输出“Lose”(引号不用输出)

样例输入

2
1000 1
1 100

样例输出

Lose
Win

算法思想:

这道题可以这样考虑,TT假设第一次取为X个石子,另一个同学假设叫YY取a个石子,TT每次可以取(m + 1) - a个石子,因为a的范围在1~m之间,故(m + 1) - a的范围也在1~m之间,所以这样取是合法的。当TT是最后取完石子,表示TT胜利。也就是表明N %(M + 1) != 0时,TT胜利。
证明上面的取法是最优的,由过程可知,TT这样的取法结果是不受YY取法的影响,故是最优的。他的每一步都是依据YY的取法来选择下一步来取多少个石子。

源代码

#include <iostream>
using namespace std;
int main()
{
    int n,N,M;
    cin>>n;
    while(n--)
    {
        cin>>N>>M;
        if(M >= N)
            cout<<"Win"<<endl;
        else
        {
            if(N % (M + 1) == 0)
                cout<<"Lose"<<endl;
            else
                cout<<"Win"<<endl;
        }
    }
    return 0;
}

算法复杂度:

由源代码可知,算法的空间复杂度为O(1),时间复杂度为O(1)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值