【博弈论】两人轮流拿石子谁会赢呢?(Nim游戏的完整证明)

Nim游戏

设n堆石子的个数分别为:[ a 1 , a 2 , a 3 , . . . , a n a_1,a_2,a_3,...,a_n a1,a2,a3,...,an],两位玩家轮流操作,每次操作可以从任意一堆石子中拿走任意数量的石子(可以拿完,但不能不拿),最后无法进行操作的人视为失败。

问如果两人都采用最优策略,先手是否必胜。

结论

a 1 ⊕ a 2 ⊕ a 3 ⊕ . . . ⊕ a n ≠ 0 a_1 \oplus a_2 \oplus a_3 \oplus ... \oplus a_n \neq 0 a1a2a3...an=0 则先手必胜
a 1 ⊕ a 2 ⊕ a 3 ⊕ . . . ⊕ a n = 0 a_1 \oplus a_2 \oplus a_3 \oplus ... \oplus a_n = 0 a1a2a3...an=0 则先手必败

证明

  1. 当所有石子个数都为0时: 0 ⊕ 0 ⊕ 0... ⊕ 0 = 0 0 \oplus 0 \oplus 0 ... \oplus 0 = 0 000...0=0
  2. 当n堆石子的个数分别为:[ a 1 , a 2 , a 3 , . . . , a n a_1,a_2,a_3,...,a_n a1,a2,a3,...,an]时
    2.1 若 a 1 ⊕ a 2 ⊕ a 3 ⊕ . . . ⊕ a n = x ≠ 0 a_1 \oplus a_2 \oplus a_3 \oplus ... \oplus a_n = x \neq 0 a1a2a3...an=x=0
    下证存在一种方法,可以使得 a 1 ⊕ a 2 ⊕ a 3 ⊕ . . . ⊕ a n = 0 a_1 \oplus a_2 \oplus a_3 \oplus ... \oplus a_n = 0 a1a2a3...an=0
    假设二进制表示下x的最高位1是第k位,那么在[ a 1 , a 2 , a 3 , . . . , a n a_1,a_2,a_3,...,a_n a1,a2,a3,...,an]中一定存在一个 a i a_i ai在二进制表示下的第k位也为1
    因此有: a i ⊕ x < a i a_i \oplus x < a_i aix<ai 此时我们从第i堆石子中拿走 a i − ( a i ⊕ x ) 个石子 a_i - (a_i \oplus x) 个石子 ai(aix)个石子
    第i堆石子还剩下: a i − [ a i − ( a i ⊕ x ) ] = a i ⊕ x a_i - [a_i - (a_i \oplus x)] = a_i \oplus x ai[ai(aix)]=aix个石子
    此时 a 1 ⊕ a 2 ⊕ a 3 ⊕ . . . ⊕ a i . . . ⊕ a n ⊕ x = x ⊕ x = 0 a_1 \oplus a_2 \oplus a_3 \oplus ... \oplus a_i ... \oplus a_n \oplus x = x \oplus x = 0 a1a2a3...ai...anx=xx=0
    由此可得在2.1情况下,我们可以通过在第i堆石子中拿取 a i − ( a i ⊕ x ) 个石子 a_i - (a_i \oplus x) 个石子 ai(aix)个石子就可以使得每堆石子的异或值变为0
    2.2 若 a 1 ⊕ a 2 ⊕ a 3 ⊕ . . . ⊕ a n = 0 a_1 \oplus a_2 \oplus a_3 \oplus ... \oplus a_n = 0 a1a2a3...an=0 (1)
    下面采用反证法证明无论我们如何操作,异或值都无法保持为0,只能大于0。
    假设我们通过某种操作之后, a i a_i ai变成了 b i ( b i < a i ) b_i (b_i < a_i ) bi(bi<ai)
    并且 a 1 ⊕ a 2 ⊕ a 3 ⊕ b i ⊕ . . . ⊕ a n = 0 a_1 \oplus a_2 \oplus a_3 \oplus b_i \oplus ... \oplus a_n = 0 a1a2a3bi...an=0(2)
    此时(1)式 ⊕ \oplus (2)式 = a 1 ⊕ a 2 ⊕ a 3 ⊕ . . . ⊕ a n ⊕ a 1 ⊕ a 2 ⊕ a 3 ⊕ b i ⊕ . . . ⊕ a n = a i ⊕ b i = 0 a_1 \oplus a_2 \oplus a_3 \oplus ... \oplus a_n \oplus a_1 \oplus a_2 \oplus a_3 \oplus b_i \oplus ... \oplus a_n = a_i \oplus b_i = 0 a1a2a3...ana1a2a3bi...an=aibi=0
    得到 a i ⊕ b i = 0 即 a i = b i a_i \oplus b_i = 0 即 a_i = b_i aibi=0ai=bi(3)
    又因为 b i < a i b_i < a_i bi<ai(4)
    (3)试与(4)式矛盾,说明无论我们如何操作,异或值都无法保持为0,只能大于0
    3.下证
    a 1 ⊕ a 2 ⊕ a 3 ⊕ . . . ⊕ a n ≠ 0 a_1 \oplus a_2 \oplus a_3 \oplus ... \oplus a_n \neq 0 a1a2a3...an=0 则先手必胜
    a 1 ⊕ a 2 ⊕ a 3 ⊕ . . . ⊕ a n = 0 a_1 \oplus a_2 \oplus a_3 \oplus ... \oplus a_n = 0 a1a2a3...an=0 则先手必败
    3.1 若 a 1 ⊕ a 2 ⊕ a 3 ⊕ . . . ⊕ a n ≠ 0 a_1 \oplus a_2 \oplus a_3 \oplus ... \oplus a_n \neq 0 a1a2a3...an=0,先手选手通过某种操作直接将异或值变为0,而后手选手无论如何操作都无法将异或值保持为0,所以下一轮先手选手开始操作的时候异或值还是不为0,因此先手选手得到的状态永远都大于0,不可能是 0 ⊕ 0 ⊕ 0... ⊕ 0 = 0 0 \oplus 0 \oplus 0 ... \oplus 0 = 0 000...0=0,所以此时先手必胜
    3.2 若 a 1 ⊕ a 2 ⊕ a 3 ⊕ . . . ⊕ a n = 0 a_1 \oplus a_2 \oplus a_3 \oplus ... \oplus a_n = 0 a1a2a3...an=0,先手选手无论如何操作都无法把状态保持为0,后手选手得到的状态永远不为0,所以 0 ⊕ 0 ⊕ 0... ⊕ 0 = 0 0 \oplus 0 \oplus 0 ... \oplus 0 = 0 000...0=0一定会被先手选手遇到,所以此时先手必败
#include <bits/stdc++.h>
using namespace std;

int main()
{
    int n,res = 0;
    cin>>n;
    while(n--)
    {
        int x;
        cin>>x;
        res ^= x;
    }
    
    if(res) puts("Yes");
    else puts("No");
    
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xKazimierzx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值