问题介绍:
在8 × 8格的国际象棋上摆放8个皇后,使其不能相互攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法
实现思路:
使用一个一维数组保存当前皇后放置情况
如array = {0, 4, 7, 5, 2, 6, 1, 3}
为八皇后问题的一种解法,表示从第0行开始,皇后分别放置在第0列、第4列、······、第3列
首先从第0行开始放,将第0个皇后放在第0列,显然不冲突,则递归调用放置方法,将第1个皇后放在第1行,并从第0列开始判断是否冲突,若不冲突则放置,然后以此类推,放置第2个皇后、第3个皇后、直到8个皇后完全放置,即可输出结果
当找到一种解法后,回到上一个递归,即进行回溯,继续执行相同步骤,直到找到下一个解法
最终会将第0个皇后放在第0列时的全部解法得到,接着回溯到该位置后会继续将第0个皇后放在第1列处,继续进行相同步骤,直到将第0个皇后放在任意一列处的解法都得到后,全部解法均得到
判断冲突时,因为对于皇后的放置,就已经按照行递增的规则进行,故无需对是否在同一行进行判断,只需要判断是否在同一列或一条斜线上
array[i] == array[n] 表示第n个皇后是否和第i个皇后在同一列
Math.abs(n - i) == Math.abs(array[n] - array[i]) 表示第n个皇后是否和第i个皇后在同一条斜线
代码实现:
package Structure;
public class Queen {
static int max = 8; //总共皇后数
static int[] array = new int[max]; //皇后放置位置
static int count = 0; //总解法数
public static void main(String[] args) {
queen();
}
//八皇后问题
public static void queen() {
Queen.check(0);
System.out.println("共" + count + "种解法");
}
//放置第n个皇后
public static void check(int n) {
if (n == max) {
//皇后已经全部放好,此时只需要输出结果即可
count++;
print();
return;
}
//依次放入皇后,并判断是否冲突
for (int i = 0; i < max; i++) {
//先把当前的第n个皇后,放到该行的第一列
array[n] = i;
//判断当放置第n个皇后到第i列时,是否冲突
if (judge(n)) {
//不冲突
//接着放第n + 1个皇后,开始递归
check(n + 1);
}
//如果冲突,将第n个皇后,放在本行的下一个位置
}
}
//检测放置的第n个皇后是否和前面已经摆放的皇后冲突
public static boolean judge(int n) {
for (int i = 0; i < n; i++) {
//判断是否在同一列或同一条斜线上,无需判断是否在同一行,因为已经按照行递增进行放置
//array[i] == array[n] 表示第n个皇后是否和第i个皇后在同一列
//Math.abs(n - i) == Math.abs(array[n] - array[i]) 表示第n个皇后是否和第i个皇后在同一条斜线
if (array[i] == array[n] || Math.abs(n - i) == Math.abs(array[n] - array[i])) {
return false;
}
}
return true;
}
//打印结果
public static void print() {
for (int i : array) {
System.out.print(i + " ");
}
System.out.println();
}
}
输出结果:
0 4 7 5 2 6 1 3
0 5 7 2 6 3 1 4
0 6 3 5 7 1 4 2
0 6 4 7 1 3 5 2
1 3 5 7 2 0 6 4
1 4 6 0 2 7 5 3
1 4 6 3 0 7 5 2
1 5 0 6 3 7 2 4
1 5 7 2 0 3 6 4
1 6 2 5 7 4 0 3
1 6 4 7 0 3 5 2
1 7 5 0 2 4 6 3
2 0 6 4 7 1 3 5
2 4 1 7 0 6 3 5
2 4 1 7 5 3 6 0
2 4 6 0 3 1 7 5
2 4 7 3 0 6 1 5
2 5 1 4 7 0 6 3
2 5 1 6 0 3 7 4
2 5 1 6 4 0 7 3
2 5 3 0 7 4 6 1
2 5 3 1 7 4 6 0
2 5 7 0 3 6 4 1
2 5 7 0 4 6 1 3
2 5 7 1 3 0 6 4
2 6 1 7 4 0 3 5
2 6 1 7 5 3 0 4
2 7 3 6 0 5 1 4
3 0 4 7 1 6 2 5
3 0 4 7 5 2 6 1
3 1 4 7 5 0 2 6
3 1 6 2 5 7 0 4
3 1 6 2 5 7 4 0
3 1 6 4 0 7 5 2
3 1 7 4 6 0 2 5
3 1 7 5 0 2 4 6
3 5 0 4 1 7 2 6
3 5 7 1 6 0 2 4
3 5 7 2 0 6 4 1
3 6 0 7 4 1 5 2
3 6 2 7 1 4 0 5
3 6 4 1 5 0 2 7
3 6 4 2 0 5 7 1
3 7 0 2 5 1 6 4
3 7 0 4 6 1 5 2
3 7 4 2 0 6 1 5
4 0 3 5 7 1 6 2
4 0 7 3 1 6 2 5
4 0 7 5 2 6 1 3
4 1 3 5 7 2 0 6
4 1 3 6 2 7 5 0
4 1 5 0 6 3 7 2
4 1 7 0 3 6 2 5
4 2 0 5 7 1 3 6
4 2 0 6 1 7 5 3
4 2 7 3 6 0 5 1
4 6 0 2 7 5 3 1
4 6 0 3 1 7 5 2
4 6 1 3 7 0 2 5
4 6 1 5 2 0 3 7
4 6 1 5 2 0 7 3
4 6 3 0 2 7 5 1
4 7 3 0 2 5 1 6
4 7 3 0 6 1 5 2
5 0 4 1 7 2 6 3
5 1 6 0 2 4 7 3
5 1 6 0 3 7 4 2
5 2 0 6 4 7 1 3
5 2 0 7 3 1 6 4
5 2 0 7 4 1 3 6
5 2 4 6 0 3 1 7
5 2 4 7 0 3 1 6
5 2 6 1 3 7 0 4
5 2 6 1 7 4 0 3
5 2 6 3 0 7 1 4
5 3 0 4 7 1 6 2
5 3 1 7 4 6 0 2
5 3 6 0 2 4 1 7
5 3 6 0 7 1 4 2
5 7 1 3 0 6 4 2
6 0 2 7 5 3 1 4
6 1 3 0 7 4 2 5
6 1 5 2 0 3 7 4
6 2 0 5 7 4 1 3
6 2 7 1 4 0 5 3
6 3 1 4 7 0 2 5
6 3 1 7 5 0 2 4
6 4 2 0 5 7 1 3
7 1 3 0 6 4 2 5
7 1 4 2 0 6 3 5
7 2 0 5 1 4 6 3
7 3 0 2 5 1 6 4
共92种解法