什么是哈希
哈希(Hash),也称散列,可将任意长度的的输入,通过某种映射规则变成固定长度的输出,这种映射规则称为哈希算法,得到的输出称为哈希值或散列值
- 从哈希值不能反向推导出原始数据
- 相同的数据经过哈希算法会得到相同的哈希值
- 由于哈希算法的原理是将输入空间的值映射到 hash 空间内,而 hash 空间较小,故一定会存在不同的输入得到相同的哈希值的现象,称为哈希冲突
HashMap 简介
- HashMap 是 Map 接口基于哈希表的实现,此实现提供了所有可选的映射操作,并允许 null 作为值或键
- HashMap 是非同步的(线程不安全)
- HashMap 不保证映射的顺序
- JDK1.8 之前 HashMap 由 数组 + 链表 组成(链表为了解决哈希冲突),而 JDK1.8 后由 数组 + 链表 + 红黑树 组成(链表长度大于 8 ,数组长度大于 64 时链表转化为红黑树,若仅仅链表长度大于 8 ,而数组长度不足,则会优先选择数组扩容)
HashMap 底层数据结构
HashMap 底层维护了一个 table 数组来存储键值对,并随着链表长度和红黑树节点数的变化,进行链表与红黑树的动态转换
对于 table 数组的元素类型,在 JDK1.8 之前为 Entry<K, V>,而 JDK1.8 后为 Node<K, V>
对于 table 数组的初始化,在 JDK1.8 之前,是在构造函数中进行的,而 JDK1.8 后,是在第一次调用 put 方法时进行的
Hashmap 核心属性
常量
/**
* The default initial capacity - MUST be a power of two.
* 默认容量,必须是 2 的次幂
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
* 最大容量,必须是 2 的次幂
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* The load factor used when none specified in constructor.
* 默认负载因子
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* The bin count threshold for using a tree rather than list for a
* bin. Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
* 树化阈值,当链表长度超过该阈值,且数组长度大于 MIN_TREEIFY_CAPACITY 时,转化为红黑树
*/
static final int TREEIFY_THRESHOLD = 8;
/**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
* 链化阈值,当红黑树节点个数低于该阈值时,转化为链表
*/
static final int UNTREEIFY_THRESHOLD = 6;
/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
* between resizing and treeification thresholds.
* 树化阈值,当数组长度超过该阈值,且链表长度超过 TREEIFY_THRESHOLD 时,转化为红黑树
*/
static final int MIN_TREEIFY_CAPACITY = 64;
成员变量
/* ---------------- Fields -------------- */
/**
* The table, initialized on first use, and resized as
* necessary. When allocated, length is always a power of two.
* (We also tolerate length zero in some operations to allow
* bootstrapping mechanics that are currently not needed.)
* 哈希表
*/
transient Node<K,V>[] table;
/**
* Holds cached entrySet(). Note that AbstractMap fields are used
* for keySet() and values().
*
*/
transient Set<Map.Entry<K,V>> entrySet;
/**
* The number of key-value mappings contained in this map.
* 当前哈希表中元素个数
*/
transient int size;
/**
* The number of times this HashMap has been structurally modified
* Structural modifications are those that change the number of mappings in
* the HashMap or otherwise modify its internal structure (e.g.,
* rehash). This field is used to make iterators on Collection-views of
* the HashMap fail-fast. (See ConcurrentModificationException).
* 当前哈希表结构修改次数(插入、删除操作)
*/
transient int modCount;
/**
* The next size value at which to resize (capacity * load factor).
*
* 扩容阈值,当哈希表中的元素个数超过阈值时触发扩容
* @serial
*/
// (The javadoc description is true upon serialization.
// Additionally, if the table array has not been allocated, this
// field holds the initial array capacity, or zero signifying
// DEFAULT_INITIAL_CAPACITY.)
int threshold;
/**
* The load factor for the hash table.
*
* 负载因子,用于计算 threshold
* threshold = capacity * loadFactor
* @serial
*/
final float loadFactor;
HashMap 构造方法
/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity the initial capacity.
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* Constructs an empty <tt>HashMap</tt> with the default initial capacity
* (16) and the default load factor (0.75).
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
/**
* Constructs a new <tt>HashMap</tt> with the same mappings as the
* specified <tt>Map</tt>. The <tt>HashMap</tt> is created with
* default load factor (0.75) and an initial capacity sufficient to
* hold the mappings in the specified <tt>Map</tt>.
*
* @param m the map whose mappings are to be placed in this map
* @throws NullPointerException if the specified map is null
*/
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
对于两个参数的构造函数,首先进行参数校验,参数合法时将参数赋值到成员变量中,对于 threshold 的计算,调用 tableSizeFor() 方法进行
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
tableSizeFor() 方法通过位运算,获取扩容阈值
/**
* Returns a power of two size for the given target capacity.
* 返回一个大于等于 cap 的数,且该数为 2 的次幂
*/
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
其余构造方法较为简单,不再赘述
HashMap put() 方法
put() 方法调用 putVal() 方法,也就是说核心逻辑在 putVal() 方法中,对该方法的调用,传入了经过扰动函数 hash() 计算的 key 的哈希值
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
扰动函数 hash() ,首先获取 key 的 hashCode ,将该 hashCode 与该 hashCode 右移 16 位的结果进行异或,从而使得 32 位的结果中,低 16 位也蕴含了高 16 位的信息
因为当数组长度很小时,进行路由寻址计算时,如果不进行扰动计算,hashCode 的高 16 位不能参与运算,路由寻址只取最后几位的话,可能造成冲突严重
路由寻址公式:(h = key.hashCode()) ^ (h >>> 16) & (length - 1)
length 为 2 的次幂,故 length - 1 为全 1 的二进制数,& 运算相当于取模
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
putVal() 方法,传入参数如下
- hash:key 的 hashCode 经扰动函数计算后得到的哈希值
- key:键
- value:值
- onlyIfAbsent:为 true 则不更改现有的值
- evict:为 false 表示 table 为创建状态
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
//tab 引用当前 hashmap 的 table 数组(散列表)
//p 表示当前的元素
//n 表示 table 数组(散列表)的长度
//i 表示路由寻址的结果(数组索引)
HashMap.Node<K,V>[] tab; HashMap.Node<K,V> p; int n, i;
//延迟初始化,第一次调用 putVal 时初始化 HashMap 中最耗费内存的散列表
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//(n - 1) & hash 为路由寻址公式,若计算出的位置无数据,则直接填充
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
//若计算出的位置已存在数据
else {
//e 表示临时节点
//k 表示临时 key
HashMap.Node<K,V> e; K k;
//若当前元素 p 与插入的元素,二者 key 一致,则用 e 记录 p,后续进行替换操作
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//若当前元素 p 已经树化
else if (p instanceof TreeNode)
e = ((HashMap.TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//除此之外,只可能为链表节点
else {
//遍历链表,找到与待插入元素 key 一致的节点,若没有则通过尾插法插入到最后
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//树化条件判断,当达到阈值,自动转换为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//找到 key 一致的节点,用 e 记录,后续进行替换操作
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//要插入的 key 已存在,进行替换
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
//增加修改次数,替换元素不增加
++modCount;
//判断是否需要扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
HashMap 扩容原理
HashMap 默认容量为 16,随着数据的增加,链化情况加剧后,操作时间复杂度上升,性能降低,故需要进行自动扩容
HashMap 的扩容通过 resize() 方法实现,得到扩容后的 table 数组,并实现数据转移
resize() 方法同样适用于 table 初始化
final HashMap.Node<K,V>[] resize() {
//oldTab 扩容前的散列表
HashMap.Node<K,V>[] oldTab = table;
//oldCap 扩容前的散列表长度
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//oldThr 扩容前的散列表扩容阈值
int oldThr = threshold;
//newCap 扩容后的散列表长度
//newThr 扩容后的散列表扩容阈值
int newCap, newThr = 0;
//计算 newCap 和 newThr 的值
//散列表已初始化
if (oldCap > 0) {
//散列表长度已经超过最大长度,无法扩容
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//先将原先散列表长度扩大一倍,若仍然小于最大长度,且扩容前的散列表长度大于默认长度,则继续扩大一倍扩容阈值
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
//oldCap == 0,散列表未初始化,但扩容阈值大于0,也就是通过有参构造方法构造 Hashmap 时,存在 2 的次幂的扩容阈值
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
//oldCap == 0 && oldThr == 0,散列表未初始化,通过无参构造方法构造 HashMap 时,采用默认的长度和扩容阈值
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//上述未计算 newThr 时,通过 newCap 和 loadFactor 重新计算
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
//创建扩容后的散列表(也可能是第一次创建散列表),转移原数据
@SuppressWarnings({"rawtypes","unchecked"})
HashMap.Node<K,V>[] newTab = (HashMap.Node<K,V>[])new HashMap.Node[newCap];
table = newTab;
//扩容前 table 不为 null,说明已经初始化,需要转移数据
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
//e 当前节点
HashMap.Node<K,V> e;
//当前索引位置有数据,不确定是单个数据还是链表节点或红黑树根节点
if ((e = oldTab[j]) != null) {
//清空当前数据
oldTab[j] = null;
//若为单个数据(next 为 null 表示为单个数据)
if (e.next == null)
//计算新散列表索引,转移数据
newTab[e.hash & (newCap - 1)] = e;
//若为红黑树根节点
else if (e instanceof HashMap.TreeNode)
//
((HashMap.TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//若为链表节点
else { // preserve order
//低位链表的头尾指针,存放在扩容之后的数组的索引位置,与当前数组的下标一致
HashMap.Node<K,V> loHead = null, loTail = null;
//高位链表的头尾指针,存放在扩容之后的数组的索引位置,为当前数组下表 + 扩容前的数组长度
HashMap.Node<K,V> hiHead = null, hiTail = null;
//临时节点
HashMap.Node<K,V> next;
do {
next = e.next;
//oldCap 为 2 的次幂,一定为 10000 这种形式
//即检测 e.hash 的对应高位是否为0,以判断放入高位链表还是低位链表
//这一段代码用于构建两个新链表,即高位链表和低位链表
//对应高位为 0
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
//对应高位为 1
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
//
} while ((e = next) != null);
//不为空表示链表存在元素,将链表尾部的 next 置空,为了防止原先链表该元素的后面存在元素
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
HashMap get() 方法
get() 方法调用 getNode() 方法获取节点,并进行判空操作,进而返回 null 或值
public V get(Object key) {
HashMap.Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
getNode() 方法如下
final HashMap.Node<K,V> getNode(int hash, Object key) {
//tab 引用当前 HashMap 的散列表
//first 链表头节点或红黑树根节点
//e 临时节点
//n 散列表长度
HashMap.Node<K,V>[] tab; HashMap.Node<K,V> first, e; int n; K k;
//散列表不为空,且路径寻址后的位置存在元素
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//若 key 一致,直接返回
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
//若该位置的 next 不为空,说明已经链化或树化
if ((e = first.next) != null) {
//若树化
if (first instanceof HashMap.TreeNode)
return ((HashMap.TreeNode<K,V>)first).getTreeNode(hash, key);
//若链化,遍历链表找到目标元素,返回
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
HashMap remove() 方法
remove() 方法有两种,两个参数的 remove() 方法需要 value 也匹配成功,二者均调用 removeNode() 方法
public V remove(Object key) {
HashMap.Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
@Override
public boolean remove(Object key, Object value) {
return removeNode(hash(key), key, value, true, true) != null;
}
removeNode() 方法如下
final HashMap.Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
//tab 引用当前 HashMap 的散列表
//p 表示当前的元素
//n 表示 table 数组(散列表)的长度
//index 表示路由寻址结果(散列表索引)
HashMap.Node<K,V>[] tab; HashMap.Node<K,V> p; int n, index;
//散列表不为空,且路径寻址后的位置存在元素
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
//临时节点、key 和 value
HashMap.Node<K,V> node = null, e; K k; V v;
//若 key 一致,说明找到目标元素
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
//用 node 记录目标元素
node = p;
//若当前元素的 next 不为空,说明已经链化或树化
else if ((e = p.next) != null) {
//若树化
if (p instanceof HashMap.TreeNode)
node = ((HashMap.TreeNode<K,V>)p).getTreeNode(hash, key);
//若链化
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
//目标元素存在,且用 node 指定,判断是否需要进行值匹配验证
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
//若树化
if (node instanceof HashMap.TreeNode)
((HashMap.TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
//若为单个节点
else if (node == p)
tab[index] = node.next;
//若链化
else
p.next = node.next;
//增加修改次数
++modCount;
//减少 size
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
HashMap replace() 方法
replace() 方法有两种,三个参数的 replace() 方法需要对传入的 oldValue 与实际的 oldValue 进行比对
实现逻辑上,调用 getNode() 方法找到目标元素,进行值的替换即可
@Override
public boolean replace(K key, V oldValue, V newValue) {
HashMap.Node<K,V> e; V v;
if ((e = getNode(hash(key), key)) != null &&
((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
e.value = newValue;
afterNodeAccess(e);
return true;
}
return false;
}
@Override
public V replace(K key, V value) {
HashMap.Node<K,V> e;
if ((e = getNode(hash(key), key)) != null) {
V oldValue = e.value;
e.value = value;
afterNodeAccess(e);
return oldValue;
}
return null;
}
常见问题
1. 为什么 JDK1.8 中 HashMap 要引入红黑树?
当哈希冲突过多时,链表长度过长,影响存取效率,在极端情况下,甚至时间复杂度可以达到O(n),故引入红黑树以提高性能
2. 为什么 JDK1.8 中 HashMap 引入红黑树而非 AVL 树?
对于AVL 树,比红黑树保持更加严格的平衡。AVL树中从根到最深叶的路径最多为 ~1.44 lg(n + 2),而在红黑树中最多为 ~2 lg(n + 1),因此,在 AVL 树中查找通常更快,但这是以更多旋转操作导致更慢的插入和删除为代价的
也就是说,对于 AVL 树,有着更高的查找性能,但红黑树在牺牲一些查找性能后,获得了较高的插入删除效率,
对于通常情况,经过功能、性能、空间开销的折中,选择红黑树
3. 为什么不一直使用红黑树,而是要做链表和红黑树的转换?
默认情况下,链表长度达到 8 则自动转换成红黑树,而当长度降到 6 则转换回去
如果 hashCode 分布良好,也就是 hash 计算的结果离散性较好时,各个值都均匀分布,很少出现链表很长的情况,此时仍然能保持较高的查询效率,无需进行红黑树转换,只有当链表长度超过阈值,查询效率降低时,才需进行红黑树转换
4. 为什么要使用扰动函数 hash() ?
若不使用扰动函数,路由寻址计算时只取较低位的信息,高位信息被忽视,从而可能造成严重碰撞,通过扰动函数,将高位信息也蕴含在低位中,使得结果更加均匀
5. 为什么要使用与运算进行取模?
由路由寻址公式 (h = key.hashCode()) ^ (h >>> 16) & (length - 1) 可以看出,结果需要进行与运算
若直接使用 key.hashCode() 计算出哈希值,则范围为:-2147483648 到 2147483648,大约 40 亿的映射空间,范围过大,无法放入内存中,且 HashMap 的初始容量为 16 ,故必须要进行与运算取模