ELU(Exponential Linear Unit,指数线性单元)激活函数是为了进一步改进ReLU及其变体(如Leaky ReLU和PReLU)的性能而提出的。ELU旨在解决ReLU的一些固有问题,特别是负区间的特性和输出均值的偏移。
1. ELU函数
ELU通过在负区间引入指数函数来改进ReLU及其变体的性能。ELU旨在解决ReLU的一些固有问题,如Dying ReLU问题和输出均值偏移问题。
1.1 数学定义
ELU的数学表达式为:
ELU ( x ) = { x if x ≥ 0 α ( e x − 1 ) if x < 0 \text{ELU}(x) = \begin{cases} x & \text{if } x \geq 0 \\ \alpha (e^x - 1) & \text{if } x < 0 \end{cases} ELU(x)={xα(ex−1)if x≥0if x<0
其中, α \alpha α 是一个超参数,通常取值为1。
1.2 关键性质
- 非线性:与ReLU一样,ELU引入了非线性特性,使得神经网络能够学习复杂的模式。
- 避免Dying ReLU问题:通过在负区间引入指数函数,ELU确保了所有神经元都有梯度,从而有效地避免了Dying ReLU问题。
- 输出均值接近零:ELU的负区间输出为 α ( e x − 1 ) \alpha (e^x - 1) α(ex−1),这使得其输出均值更接近于零,从而有助于加速神经网络的学习过程。相比之下,ReLU在负区间的输出为零,这可能导致输出均值偏移。
- 平滑性:ELU在负区间的输出是连续且光滑的,这有助于提高模型的稳定性和收敛速度。
1.3 提出时间
ELU激活函数是在2015年由Djork-Arné Clevert、Thomas Unterthiner和Sepp Hochreiter在论文《Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)》中提出的。
1.4 应用
ELU在许多深度学习模型中得到了应用,特别是在卷积神经网络(CNN)和其他需要处理大量非线性数据的模型中。它通过改进负区间的特性和输出均值,使得模型能够更快地收敛并达到更高的性能。
2. SELU函数
SELU(Scaled Exponential Linear Unit,缩放指数线性单元)激活函数是ELU的一个变体,通过引入缩放因子来进一步改进神经网络的性能。SELU不仅解决了ReLU的一些问题,还引入了自归一化(self-normalizing)的特性,使得神经网络在训练过程中能够自动保持均值和方差的稳定。
2.1 数学定义
SELU的数学表达式为:
SELU ( x ) = λ { x if x ≥ 0 α ( e x − 1 ) if x < 0 \text{SELU}(x) = \lambda \begin{cases} x & \text{if } x \geq 0 \\ \alpha (e^x - 1) & \text{if } x < 0 \end{cases} SELU(x)=λ{xα(ex−1)if x≥0if x<0
其中, α \alpha α 和 λ \lambda λ 是两个固定的参数,通常取值为:
- α ≈ 1.67326 \alpha \approx 1.67326 α≈1.67326
- λ ≈ 1.0507 \lambda \approx 1.0507 λ≈1.0507
2.2 关键性质
- 非线性:与ReLU和ELU一样,SELU引入了非线性特性,使得神经网络能够学习复杂的模式。
- 避免Dying ReLU问题:通过在负区间引入指数函数,SELU确保了所有神经元都有梯度,从而有效地避免了Dying ReLU问题。
- 自归一化:SELU的一个重要特性是其自归一化特性,即在每一层的输出均值和方差能够自动趋于稳定。这有助于加速训练过程并提高模型的性能。
- 输出均值和方差稳定:SELU的缩放因子 λ \lambda λ 和 α \alpha α 的选择,使得其输出均值和方差能够保持稳定,从而有助于防止梯度消失和梯度爆炸问题。
2.3 提出时间
SELU激活函数是在2017年由Günter Klambauer、Thomas Unterthiner、Andreas Mayr和Sepp Hochreiter在论文《Self-Normalizing Neural Networks》中提出的。
参考
[1] Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
[2] Self-Normalizing Neural Networks
欢迎关注我的GitHub和微信公众号[真-忒修斯之船],来不及解释了,快上船!
仓库上有原始的Markdown文件,完全开源,欢迎大家Star和Fork!