题目描述:
机器人搬砖,一共有 N 堆砖存放在 N 个不同的仓库中,第 i 堆砖中有 bricks[i] 块砖头,要求在 8 小时内搬完。
机器人每小时能搬砖的数量取决于有多少能量格,机器人一个小时中只能在一个仓库中搬砖,机器人的能量格只在这一个小时有效,为使得机器人损耗最小化,应尽量减小每次补充的能量格数。
为了保障在 8 小时内能完成搬砖任务,请计算每小时给机器人充能的最小能量格数。
特别说明:
1. 无需考虑机器人补充能力格的耗时;
2. 无需考虑机器人搬砖的耗时;
3. 机器人每小时补充能量格只在这一个小时中有效;
输入描述:
第一行为一行数字,空格分隔
输出描述:
机器人每小时最少需要充的能量格,若无法完成任务,输出 -1
示例1:
输入
30 12 25 8 19
输出
15
示例2:
输入
10 12 25 8 19 8 6 4 17 19 20 30
输出
-1
示例特别说明:砖的堆数为12堆存放在12个仓库中,机器人一个小时内只能在一个仓库搬砖,不可能完成任务;
C++源码:
#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
#include <sstream>
using namespace std;
int main() {
string line;
while (getline(cin, line)) {
stringstream ss(line);
string str;
vector<int> bricks;
//if (cin.get() == '\n') {
// break;
//}
while (getline(ss, str, ' ')) {
bricks.push_back(stoi(str));
}
sort(bricks.begin(), bricks.end());
if (bricks.size() > 8) {
cout << -1 << endl;
continue;
}
else if (bricks.size() == 8) {
cout << bricks.back() << endl;
continue;
}
int times = 8 - bricks.size();
vector<int> newBricks;
for (int i = 0; i < times && i < bricks.size(); i++) {
int num = bricks[bricks.size() - 1 - i] / 2;
newBricks.push_back(num);
newBricks.push_back(bricks[bricks.size() - 1 - i] - num);
}
for (int i = 0; i < bricks.size() - times; i++) {
newBricks.push_back(bricks[i]);
}
int max = *max_element(newBricks.begin(), newBricks.end());
cout << max << endl;
}
return 0;
}