基于视频分析的rPPG心率检测
YTimo
PKU EECS
注:本文内容主要来自于综述文章:Video-Based Heart Rate Measurement: Recent Advances and Future Prospects[1],笔者加入了一些原理性的以及自己实际经验的补充。如果想了解更多详细信息,欢迎阅读原论文。
心率估计和监测对于确定一个人的生理和心理状态非常重要,传统的测量心率的方法都是接触式的,如电极式心电图,通过电极片感应人体的心动电流来测量心率;在可穿戴设备如智能手表上,最常用的是利用光电容积脉搏波(PPG)来进行测量,但同样需要紧密接触皮肤。接触式的测量方式虽然较为准确,但必然会带来很多不适与不便,尤其在某些特殊的场景下,无法使用接触式的测量方式。
2008年,Verkruysse等人首先研究证明,通过摄像头采集人的面部视频,可以从中分析出和心率相关的光电容积脉搏波描记信号,从而实现远程测量心率[2],相关原理被称为rPPG。在此基础上,大量后续的研究开始致力于提高这一远程测量技术的准确度和鲁棒性,提出了许多新方法和新框架。
但这种基于视频分析的远程心率检测受环境和检测对象的影响比较大,为了提高其检测的准确度和鲁棒性,研究者们分别从环境光照以及检测对象的运动状态两个方向上进行了大量的研究。最近,一些研究也开始将二者同时进行考虑。但总的来说,在使用场景和检测鲁棒性上,基于视频分析的远程心率检测还有很大的应用场景和研究空间。
本文对基于视频分析的rPPG心率检测的研究进展进行了系统的梳理,对代表性的方法和框架进行了总结,描述了这一技术的未来前景,并讨论了一些潜在的研究方向。我们相信,这
基于视频的rPPG心率测量技术通过摄像头捕捉面部视频来分析心率,提供了一种无接触、舒适的监测方式。尽管面临光照变化和运动影响的挑战,研究者已经提出了多种方法来改善准确性和鲁棒性,如信号分离算法、模型方法和运动补偿策略。未来的研究方向包括利用更多先验知识、建立公开数据集、多模式融合以及监测多个生理指标。rPPG在医疗、健康监护等领域有着广阔的应用前景。
订阅专栏 解锁全文
875

被折叠的 条评论
为什么被折叠?



