大模型的研究新方向:混合专家模型(MoE)

混合专家模型(MoE)是解决大模型复杂性问题的有效途径,通过门控网络分配任务给专业化子模型,实现高效训练和推理。MoE起源于集成学习,近年来在自然语言处理、计算机视觉等领域取得显著进展,如谷歌的Swtich Transformer和LIMoE。其核心思想是将任务细分,利用稀疏门控网络选择最佳专家模型处理特定输入,降低计算成本。MoE的优势包括任务特异性、灵活性、高效性和可解释性,但也存在训练复杂性、超参数调整等挑战,以及在分布式环境中的通信宽带瓶颈问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大模型的发展已经到了一个瓶颈期,包括被业内所诟病的罔顾事实而产生的“幻觉”问题、深层次的逻辑理解能力、数学推理能力等,想要解决这些问题就不得不继续增加模型的复杂度。随着不同应用场景的实际需求,大模型的参数会变得越来越大,复杂性和规模不断的增加,尤其是在多模态大模型的开发中,每个数据集可能完全不同,有来自文本的数据、图像的数据、语音的数据等,包含不同的模式,特征和标注之间的关系可能也大有不同,这不但增加了训练的难度,也提高了推理的成本,如何将大模型的训练难度和推理成本降低已经是各大研究机构和大厂都在攻克的任务

为了实现大模型的高效训练和推理,有的是从模型底层下手,比如直接改变底层模型架构,将原来的Transformer架构改成近期新出的基于状态空间模型(SSM)的mamba架构;有的是在预训练微调方法上下手,比如我们在上一篇文章《

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南七小僧

打赏后,可以添加微信一对一咨询

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值