组合数学 - 01 排列与组合

排列与组合

概念

  1. 研究离散数学的排列组合的问题,对离散对象的计数
    (1)研究三大问题:存在性,计数性,优化性
  2. 加法法则与乘法法则
    (1)加法法则:分类问题(A->B: 火车3趟,客车2趟;男20,女10;)
    (2)乘法法则:分步问题(A->B->C: A->B火车3趟,B->C客车2趟)
  3. 减法法则
    (1)定义A的补集 A ‾ \overline{A} A:A = S - A ‾ \overline{A} A
    (2)一一对应:计数时常用技巧,A容易,B困难,A与B一一对应,对B的计数转为A。
    在这里插入图片描述
  4. A 表示集合,| A | 表示集合的个数 m,| B | 个数 n
    (1)| A * B | = m * n
  5. 排列和组合
    (1)组合:不考虑顺序,称为组合数 C(4,3) = 4! / 3!
    (2)排列:考虑顺序,称为排列数 P(4,3) = 4 * 3 * 2,P(n,r) = n! / (n-r)!
  6. 排列的递推关系
    (1)分布递推(选第一个盒子内的乒乓球,其它)
       [1] P(n,r) = n P(n-1, r-1)
    (2)分类递推(选第一个球,不选第一个球)
       [1] P(n,r) = P(n-1, r) + r P(n-1, r-1)
  7. 组合的递推:C(n,r) * r! = P(n,r) = n! / (n-r)!
    (1) C(n,r) = C(n,n-r)
    (2) C(n,l) C(l,r) = C(n,r) C(n-r,l-r)
  8. Cayley定理:过n个有标志顶点的树的数目等于nn-2
  9. 组合恒等式
    (1) C(m+n,r) = C(m,0)C(n,r) + C(m,1)C(n,r-1) + … + C(m,r)C(n,0)
       [1] 理解为:红m蓝n球,共抽出 r 个球
  10. 格路模型:C(m+n, n)
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值