
pandas
文章平均质量分 86
尤而小屋
这个作者很懒,什么都没留下…
展开
-
100个pandas数据处理技巧
大家好,我是Peter~Pandas 是一个强大的 Python 数据分析库,它提供了非常灵活和高效的方式来处理时间序列数据。在Pandas中,有许多强大的数据处理技巧可以帮助你高效地分析和操作数据。以下是100个Pandas数据处理技巧的简要介绍和相应的Python代码示例。每个示例都会尽量简洁,由浅入深,希望对大家有所帮助。觉得不错的话,欢迎点赞、收藏、转发~2. 读取CSV文件3. 查看数据前几行4. 查看数据列信息5. 查看数据基本信息6. 查看数据描述统计信息7. 选择单列原创 2024-11-07 14:20:52 · 904 阅读 · 1 评论 -
pandas处理时间序列-基础入门
公众号:尤而小屋编辑:Peter作者:Peter大家好,我是Peter~Pandas 是一个强大的 Python 数据分析库,它提供了非常灵活和高效的方式来处理时间序列数据。。原创 2024-10-19 15:46:56 · 1231 阅读 · 0 评论 -
5000字,通透讲解Pandas读存Excel
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~本文记录的是如何通过Pandas来读取Excel文件,以及将DataFrame保存到Excel文件中。官网参数详解:https://pandas.pydata.org/docs/reference/api/pandas.read_excel.html参数read_excel函数能够读取的格式包含:xls, xlsx, xlsm, xlsb, odf, ods 和 odt 文件扩展名。支持读取单一sheet或几个shee.原创 2022-05-02 09:42:21 · 1324 阅读 · 0 评论 -
Pandas+Numpy+Sklearn随机取数
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~本文记录的是如何使用Python、pandas、numpy、scikit-learn来实现随机打乱、抽取和切割数据。主要的方法包含:sampleshufflenp.random.permutationtrain_test_split导入数据In [1]:import pandas as pdimport numpy as npimport random # 随机模块import plotly_ex.原创 2022-04-22 22:35:07 · 1107 阅读 · 0 评论 -
pandas索引的设置与修改
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~本文主要是介绍Pandas中行和列索引的4个函数操作:set_indexreset_indexset_axisrename创建索引快速回顾下Pandas创建索引的常见方法:pd.IndexIn [1]:import pandas as pdimport numpy as npIn [2]:# 指定类型和名称s1 = pd.Index([1,2,3,4,5,6,7], dt.原创 2022-04-17 00:09:48 · 23100 阅读 · 0 评论 -
Pandas索引基本操作
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~本文主要是记录Pandas中单层索引的一些基本操作。10种索引下面简单回顾下之前学习创建的10种索引:pd.IndexIn [1]:import pandas as pdimport numpy as npIn [2]:# 指定类型和名称s1 = pd.Index([1,2,3,4,5,6,7], dtype="int", name="Peter")s1Ou.原创 2022-04-15 00:05:22 · 3297 阅读 · 0 评论 -
快速认识Pandas的10大索引
快速认识Pandas的10大索引公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~今天给大家带来一篇关于Pandas的基本文章:10种你必须掌握的Pandas索引。索引在我们的日常生活中其实是很常见的,就像:一本书有自己的目录和具体的章节,当我们想找某个知识点,翻到对应的章节即可;也像图书馆中的书籍被分类成文史类、技术类、小说类等,再加上书籍的编号,很快就能够找到我们想要的书籍。外出吃饭点菜的菜单,从主食类、饮料/汤类、凉菜类等,到具体的菜名等上面不同的常用都可原创 2022-03-22 00:34:38 · 4462 阅读 · 0 评论 -
6种方式创建多层索引MultiIndex
49_6种方式创建多层索引MultiIndex公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~在上一篇文章中介绍了如何创建Pandas中的单层索引,今天给大家带来的是如何创建Pandas中的多层索引。pd.MultiIndex,即具有多个层次的索引。通过多层次索引,我们就可以操作整个索引组的数据。本文主要介绍在Pandas中创建多层索引的6种方式:pd.MultiIndex.from_arrays():多维数组作为参数,高维指定高层索引,低维指定低层索引。pd.Mu原创 2022-03-22 00:32:05 · 4355 阅读 · 1 评论 -
精选22个Pandas实用函数
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~今天小编又从26个字母中精选出22个Pandas常用的函数,将它们的使用方法简单介绍给大家,详细内容可以查看官网学习。其中o、y、z没有相应的函数。之前写过一篇文章,可以参考学习:精选23个Pandas常用函数import pandas as pdimport numpy as npapply函数Pandas中一个很实用的函数,下面模拟了一份数据:我们分别将python的内置函数、自定义函数、匿名函数传给a.原创 2022-03-02 00:12:30 · 895 阅读 · 0 评论 -
pandas文本处理双雄extract + extractall
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~今天给大家介绍两个Pandas中处理文本数据的函数,主要功能是从文本内容中提取想要的信息:extract + extractallextract函数语法说明extract函数的具体使用形式如下,只有3个参数:Series.str.extract(pat, flags=0, expand=None)参数的具体解释为:pat:字符串或者正则表达式flags:整型expand:布尔值,是否返回DataFrame.原创 2022-02-19 10:58:45 · 1575 阅读 · 0 评论 -
盘点【尤而小屋】阅读1000+的文章
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~今天带领大家盘点下【尤而小屋】阅读过1000+的文章,它们涉及到的写作方向包含:Python入门、可视化工具、Pandas系列文章、数据分析案例、工具利器,还有几篇杂文~目前阅读量最高的是一篇关于Pyecharts可视化的文章,完全出乎小编意料。但就是这篇文章成为了阅读量的No.1,被微信官方极力推荐:纯国产可视化库Pyecharts首秀! 下面是统计出来的文章,顺序参照发文时间:Python入门-字符串初相识生日.原创 2022-01-23 14:07:51 · 1080 阅读 · 0 评论 -
pandas入门PPT
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~最近小编将自己写作的Pandas系列的入门文章浓缩成了一份简单的PPT。PPT的内容主要是介绍了Pandas的常见数据结构,以及高频的函数:Pandas的两种数据结构11种方式创建DataFrameDataFrame取数技巧数据处理基石:Pandas数据探索Pandas数据类型Pandas重点机制:groupby、rank、sort_valuesPandas缺失值、重复值处理Pandas数据合并:merge、c.原创 2022-01-23 14:07:02 · 2824 阅读 · 6 评论 -
小而全的Pandas数据分析案例
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~写过很多关于Pandas的文章,本文开展了一个简单的综合使用,主要分为:如何自行模拟数据多种数据处理方式数据统计与可视化用户RFM模型用户复购周期构建数据本案例中用的数据是小编自行模拟的,主要包含两个数据:订单数据和水果信息数据,并且会将两份数据合并import pandas as pdimport numpy as npimport randomfrom datetime import *imp.原创 2022-01-12 23:18:40 · 1247 阅读 · 1 评论 -
精选23个Pandas函数
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~从26个字母中精选出23个Pandas常用的函数,将它们的使用方法介绍给大家。其中o、y、z没有相应的函数。import pandas as pdimport numpy as np下面介绍每个函数的使用方法,更多详细的内容请移步官网:https://pandas.pydata.org/docs/reference/general_functions.htmlassign函数df = pd.DataFrame({.原创 2022-01-06 22:45:06 · 172 阅读 · 0 评论 -
深入理解Pandas数据排序
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~在之前的一篇文章中,详细介绍了关于如何使用pandas的内置函数sort_values来实现数据的排序。本文讲解的是如何使用自定义方式来实现排序:映射关系实现CategoricalDtype类型实现模拟数据先模拟一份简单的数据:import pandas as pdimport numpy as npdf = pd.DataFrame({ "nick":["aaa","bbb","aba","ab.原创 2022-01-06 22:44:22 · 1007 阅读 · 0 评论 -
精选23个pandas常用函数
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~从26个字母中精选出23个Pandas常用的函数,将它们的使用方法介绍给大家。其中o、y、z没有相应的函数。import pandas as pdimport numpy as np下面介绍每个函数的使用方法,更多详细的内容请移步官网:https://pandas.pydata.org/docs/reference/general_functions.htmlassign函数df = pd.DataFrame({.原创 2021-12-26 16:07:28 · 2060 阅读 · 0 评论 -
pandas行列转换的4大技巧
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~本文介绍的是Pandas中4个行列转换的方法,包含:melt转置T或者transposewide_to_longexplode(爆炸函数)最后回答一个读者朋友问到的数据处理问题。Pandas行列转换pandas中有多种方法能够实现行列转换:导入库import pandas as pdimport numpy as np函数meltmelt的主要参数:pandas.melt(frame, .原创 2021-12-15 20:35:46 · 13354 阅读 · 0 评论 -
12大pandas配置技巧
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~在Pandas的使用过程中,除了数据,我们更多的就是和表格打交道。为了更好地展示一份表格数据,必须前期有良好的设置。本文介绍的是Pandas的常用配置技巧,主要根据options和setings来展开的。强推官网学习地址:https://pandas.pydata.org/pandas-docs/stable/user_guide/options.html。导入这是一种国际惯例的导入方式!import pandas .原创 2021-12-14 17:48:16 · 1454 阅读 · 0 评论 -
12大Pandas配置技巧
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~本文中主要介绍的是如何来美化Pandas的DataFrame的数据。主要是通过Pandas中的两个方法来实现:Styler.applymap:逐个元素,返回带有CSS属性-值对的单个字符串Styler.apply:列、表、行的方式,返回具有相同形状的Series或者DataFrame,其中每个值都是带有CSS属性值对的字符串。该方法在作用的时候,通过参数axis来传递,axis=0表示按列作用,axis=1表示按行作用。.原创 2021-12-07 23:24:38 · 588 阅读 · 1 评论 -
12大Pandas配置技巧
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~在Pandas的使用过程中,除了数据,我们更多的就是和表格打交道。为了更好地展示一份表格数据,必须前期有良好的设置。本文介绍的是Pandas的常用配置技巧,主要根据options和setings来展开的。强推官网学习地址:https://pandas.pydata.org/pandas-docs/stable/user_guide/options.html。导入这是一种国际惯例的导入方式!import pandas .原创 2021-12-03 13:08:54 · 911 阅读 · 0 评论 -
Pandas表格美颜技巧
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~本文中主要介绍的是如何来美化Pandas的DataFrame的数据。主要是通过Pandas中的两个方法来实现:Styler.applymap:逐个元素,返回带有CSS属性-值对的单个字符串Styler.apply:列、表、行的方式,返回具有相同形状的Series或者DataFrame,其中每个值都是带有CSS属性值对的字符串。该方法在作用的时候,通过参数axis来传递,axis=0表示按列作用,axis=1表示按行作用。.原创 2021-11-30 22:25:39 · 1627 阅读 · 0 评论 -
Pandas内置绘图大全
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~之前写过很多关于Pandas的文章都是介绍如何使用Pandas来处理数据,这的确是它的强项。其实,Pandas还有一个内置的功能:绘图。你没有看错:Pandas自身就是可以绘图的。本文详细介绍基于Pandas的快速绘图方法。Pandas内置绘图参数下面是常见的参数及解释,详细的请参考官网:https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.pl.原创 2021-11-24 00:29:22 · 913 阅读 · 0 评论 -
准备出书啦
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~告诉大家一个消息:Peter已经将出书的工作提上日程了。书籍是关于Pandas库的。关注尤而小屋的小伙伴都知道,Peter一直在坚持更新Pandas库相关的文章,所以在不久的将来会出一本书。Peter已经在联系出版社,行动起来啦!期待一下????第一次写书,几乎是零经验,真的是万事开头难。终于把目录整出来啦~关于书名和目录还请大家多提意见书名取什么名字好?Peter自己想了4个名字:《Pandas数据分析从入门到实原创 2021-11-18 23:03:17 · 1706 阅读 · 0 评论 -
利用Pandas实现SQL的group_concat功能
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~本文是对比SQL学习Pandas的第三篇文章,主要讲解的是如何利用pandas来实现SQL中的group_concat操作。group_concatSQL或者MySQL中的group_concat到底实现的什么功能呢?看例子来说明。下面是表information中存储的一份简单数据,两个字段id和name:+----+-----+| id | name |+------+---+|1 | 10 ||1 .原创 2021-11-13 09:28:47 · 2336 阅读 · 0 评论 -
一文搞定Pandas的透视表
一文搞定pandas的透视表透视表在一种功能很强大的图表,用户可以从中读取到很多的信息。利用excel可以生成简单的透视表。本文中讲解的是如何在pandas中的制作透视表。读取数据import pandas as pdimport numpy as npdf = pd.read_excel("./sales-funnel.xlsx") # 当前目录下的文件df.head()设置数据使用category数据类型,按照想要查看的方式设置顺序不严格要求,但是设置了顺序有助于分析,一原创 2021-10-19 09:23:03 · 608 阅读 · 0 评论 -
一文搞定Pandas中的数据合并
一文搞定pandas的数据合并在实际处理数据业务需求中,我们经常会遇到这样的需求:将多个表连接起来再进行数据的处理和分析,类似SQL中的连接查询功能。pandas中也提供了几种方法来实现这个功能,表现最突出、使用最为广泛的方法是merge。本文中将下面????四种方法及参数通过实际案例来进行具体讲解。mergeappendjoinconcat文章目录导入库做数据分析的时候这两个库是必须导入的,国际惯例一般。import pandas as pdimport numpy as原创 2021-10-19 09:22:24 · 4101 阅读 · 0 评论 -
入门Pandas必须掌握的技巧
入门Pandas,必须掌握的技巧总结自己经常使用的pandas操作方法:创建DataFrame数据查看数据相关信息查看头尾文件花样取数切片取数常见函数使用导入包import pandas as pdimport numpy as np使用技巧1-创建DataFrame数据方式1:自己直接创建df1 = pd.DataFrame({ "name":["小明","小红","小孙","王小","关宇","刘蓓","张菲"], "age":[20,18,27,20原创 2021-10-19 09:19:46 · 719 阅读 · 0 评论 -
图解Pandas中的移动函数shift
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~本文主要介绍的是pandas中的一个移动函数:shift,主要是4个参数的使用。最后结合一个具体的电商领域中用户的复购数据来说明如何使用shift函数。这个案例综合性很强,除了学习掌握shift函数,你还会复习到以下pandas中的多个函数使用技巧:分组统计:groupby过滤筛选数据:query排序函数:sort_values合并函数:concat字段重命名:rename缺失值删除:dropna宝藏函数:ap.原创 2021-09-02 18:17:45 · 8461 阅读 · 1 评论 -
图解Pandas中的数据分类
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~本文中介绍的是Categorical类型,主要实现的数据分类问题,用于承载基于整数的类别展示或编码的数据,帮助使用者获得更好的性能和内存使用。背景:统计重复值在一个Series数据中经常会出现重复值,我们需要提取这些不同的值并且分别计算它们的频数:import numpy as npimport pandas as pddata = pd.Series(["语文","数学","英语","数学","英语","地理".原创 2021-09-02 18:12:14 · 1433 阅读 · 0 评论 -
14种方式,34个案例:对比SQL,学习Pandas操作
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~本文主题:对比SQL,学习Pandas操作!在SQL中查询数据的时候我们所有各种操作,主要是通过select、where、group by等多个关键词的组合查询来实现的。本文中介绍的如何在相同的需求下,通过pandas来实现取数操作。比较方向查询全部数据前N条后N条中间段数据部分字段指定等式条件指定不等式条件取反操作指定多个条件指定计算等式模糊查询排序分组统计取别名参考资料因为本文主要.原创 2021-08-23 10:24:52 · 181 阅读 · 0 评论 -
图解Pandas透视表pivot_table
图解Pandas透视表pivot_table大家好,我是Peter呀~终于开始Pandas进阶内容的写作了。相信很多人都应该知道透视表,在Excel会经常去制作它,来实现数据的分组汇总统计。在Pandas中,我们把它称之为pivot_table。透视表的制作灵活性高,可以随意定制我们想要的的计算统计要求,一般在制作报表神器的时候常用。下面通过具体的例子来对比Excel和Pandas中透视表的实现方法。Excel透视表下面是在Excel表格中使用消费数据制作的透视表(部分数据截图),我们统计的原创 2021-08-12 18:50:17 · 2010 阅读 · 0 评论 -
27000字,103天,16篇:深入浅出Pandas数据分析
深入浅出Pandas数据分析大家好,我是Peter~《深入浅出Pandas数据分析》第一版本终于可以和大家见面咯!文末有资料领取方式从4月24号的第一篇Pandas文章:《一切从爆炸函数开始》,到昨天8月5号的《图解Pandas的轴旋转函数:stack和unstack》,总共历时103天,让Pandas来见证吧:两行代码告诉你两个日期之间的时间差,这就是Pandas????什么是Pandas什么是Pandas?引用一段来自Pandas中文官网的解释:Pandas 是 Python的核心数原创 2021-08-06 18:00:36 · 2307 阅读 · 0 评论 -
图解pandas的轴旋转函数:stack和unstack
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~今天带来的文章是图解Pandas中的两个重要的函数:stack和unstack。stack和unstack是针对pandas的轴进行重新排列的两个方法,二者互为逆操作:stack: 将数据的列columns转旋转成行indexunstack:将数据的行index旋转成列columns二者默认操作的都是最内层Pandas连载文章本文是Pandas更新的第16篇文章,欢迎访问阅读:下面通过详细的例子来进行讲解.原创 2021-08-05 01:07:28 · 5921 阅读 · 2 评论 -
pandas数据合并:concat、join、append
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~图解pandas数据合并:concat+join+append在上一篇文章中介绍过pandas中最为常用的一个合并函数merge的使用,本文中介绍的是另外3个与合并操作相关的函数:concatjoinappendPandas连载本文是Pandas数据分析库的第15篇,欢迎阅读:模拟数据首先是模拟几份不同的数据:import pandas as pdimport numpy as npc.原创 2021-08-01 19:51:44 · 765 阅读 · 1 评论 -
图解pandas的数据合并merge
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~在实际的业务需求中,我们的数据可能存在于不同的库表中。很多情况下,我们需要进行多表的连接查询来实现数据的提取,通过SQL的join,比如left join、left join、inner join等来实现。在pandas中也有实现合并功能的函数,比如:concat、append、join、merge。本文中重点介绍的是merge函数,也是pandas中最为重要的一个实现数据合并的函数。看完了你会放弃SQL吗?Panda.原创 2021-07-24 16:02:08 · 5828 阅读 · 12 评论 -
图解Pandas的排序sort_values函数
图解Pandas的排序sort_values函数大家好,我是Peter~在上一篇pandas的文章中已经介绍排名机制中rank函数的使用。其实在实现排名的过程,已经顺带实现了排序的功能;但是pandas中还有一个重要的方法来解决排序问题:sort_values。Pandas连载Pandas文章已经形成连载,前10篇文章分别是:参数解释DataFrame.sort_values(by, axis=0, ascending=Tru原创 2021-07-13 13:00:21 · 13401 阅读 · 0 评论 -
图解Pandas重复值处理
12_图解Pandas重复值处理pandas中处理重复值使用的是两个函数:duplicated():判断是否有重复值drop_duplicates() :删除重复值Pandas连载文章Pandas的文章已经形成连载,欢迎关注阅读:模拟数据在本文中模拟了两份不同的数据:1、一份订单数据,后面会使用import pandas as pdimport numpy as np# 导入一份模拟数据:待用df1 = pd.read_excel("订单重复值.xlsx")df1原创 2021-07-13 12:42:39 · 1999 阅读 · 1 评论 -
图解pandas缺失值处理
公众号:尤而小屋作者: Peter编辑:Peter数据清洗真的是一项复杂且繁琐的工作。有人嘲讽????:搞数据的,80%的时间花在了数据清洗上。听起来匪夷所思的,但实际情况真的就是如此呀!但也是整个数据分析过程中最为重要的一环。本篇文章将介绍如何使用Pandas库来处理缺失值。Pandas系列Pandas文章已经连载12篇,往期精选文章:1-图解pandas的排序机制2-图解pandas的排名机制3-图解pandas的groupby机制常用函数当我们的数据中出现了空值或者缺失值之后原创 2021-07-06 23:11:46 · 1634 阅读 · 0 评论 -
详解pandas中的groupy机制
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~在自己的数据处理分析日常中,经常会遇到对数据的某个字段进行分组再求和或均值等其他操作的需求,比如电商中根据不同的支付用户、不同的月份、不同的性别、不同的用户来源进行用户的画像细分,来研究不同组用户的偏好和消费情况等。在pandas中自己都是使用groupby来解决这类问题,本文结合一份模拟的数据来讲解groupby的内部机制。模拟数据为了方便解释,自己模拟了一份虚拟数据,仅包含3个字段:员工姓名employees、薪资.原创 2021-06-26 19:26:53 · 2005 阅读 · 1 评论 -
数据处理基石:Pandas数据初探索
公众号:尤而小屋作者:Peter编辑:PeterPandas数据初探索本文介绍的是Pandas数据初探索。当我们生成或者导入了数据之后,通过数据的探索工作能够快速了解和认识数据基本信息,比如数据中字段的类型、索引、最值、缺失值等,可以让我们对数据的全貌有一个初步了解。思维导图模拟数据本文中的方法介绍使用的是一份模拟数据,有字符型、数值型,还有时间类型;同时数据刻意存在了缺失值:使用pandas的read_excel方法对数据进行读取:同时生成一个Series类型数据:数据样本.原创 2021-06-14 23:36:30 · 501 阅读 · 5 评论