HashMap概述
-
HashMap 是 Map 接口的实现,HashMap 允许空的 key-value 键值对,HashMap 被认为是 Hashtable 的增强版,HashMap 是一个非线程安全的容器,如果想构造线程安全的 Map 考虑使用
ConcurrentHashMap
。HashMap 是无序的,因为 HashMap 无法保证内部存储的键值对的有序性。 -
HashMap 的底层数据结构是数组 + 链表的集合体,数组在 HashMap 中又被称为桶(bucket)。遍历 HashMap 需要的时间损耗为 HashMap 实例桶的数量 + (key - value 映射) 的数量。因此,如果遍历元素很重要的话,不要把初始容量设置的太高或者负载因子设置的太低。
-
HashMap 实例有两个很重要的因素,初始容量和负载因子,初始容量指的就是 hash 表桶的数量,负载因子是一种衡量哈希表填充程度的标准,当哈希表中存在足够数量的 entry,以至于超过了负载因子和当前容量,这个哈希表会进行 rehash 操作,内部的数据结构重新 rebuilt。
-
注意 HashMap 不是线程安全的,如果多个线程同时影响了 HashMap ,并且至少一个线程修改了 HashMap 的结构,那么必须对 HashMap 进行同步操作。可以使用 Collections.synchronizedMap(new HashMap) 来创建一个线程安全的 Map。
-
HashMap 会导致除了迭代器本身的 remove 外,外部 remove 方法都可能会导致 fail-fast 机制,因此尽量要用迭代器自己的 remove 方法。如果在迭代器创建的过程中修改了 map 的结构,就会抛出 ConcurrentModificationException 异常。
HashMap的实现原理
HashMap
基于Hash算法实现的,我们通过put(key,value)存储,get(key)来获取
。 当传入key时,
HashMap会根据key. hashCode()
计算出hash值,根据hash值将value保存在bucket
里。当计算出
的hash值相同时,我们称之为hash冲突,HashMap的做法是用链表和红黑树存储相同hash值的
value。当hash冲突的个数比较少时,使用链表否则使用红黑树。
HashMap的底层实现原理?
从结构实现来讲,HashMap是数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的,如下如所示。
这里需要知道两个问题:
- 数据底层具体存储的是什么?
- 这样的存储方式有什么优点呢?
(1)首先从源码可知,HashMap类中有一个非常重要的字段,就是Node[] table
,即哈希桶数组,明显它是一个Node的数组
。我们来看Node[JDK1.8]是何物。
Node是HashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。上图中的每个黑色圆点就是一个Node对象。
(2)HashMap就是使用哈希表来存储的。哈希表为解决冲突,可以采用开放地址法和链地址法等来解决
问题,Java中HashMap采用了链地址法。链地址法,简单来说,就是数组加链表的结合。在每个数组元素上都一个链表结构,当数据被Hash后,得到数组下标,把数据放在对应下标元素的链表上。例如程序执行下面代码:
map.put("张三","狂徒")
- 系统将调用”张三”这个key的hashCode()方法得到其hashCode值(该方法适用于每个Java对象),然后再通过Hash算法的后两步运算(高位运算和取模运算)来定位该键值对的存储位置,有时两个key会定位到相同的位置,表示发生了Hash碰撞。当然Hash算法计算结果越分散均匀,Hash碰撞的概率就越小,map的存取效率就会越高。
- 如果哈希桶数组很大,即使较差的Hash算法也会比较分散,如果哈希桶数组数组很小,即使好的Hash算法也会出现较多碰撞,所以就需要在空间成本和时间成本之间权衡,其实就是在根据实际情况确定哈希桶数组的大小,并在此基础上设计好的hash算法减少Hash碰撞。
- 那么通过什么方式来控制map使得Hash碰撞的概率又小,哈希桶数组(Node[] table)占用空间又少呢?答案就是好的Hash算法和扩容机制。
- 在理解Hash和扩容流程之前,我们得先了解下HashMap的几个字段。从HashMap的默认构造函数源码可知,构造函数就是对下面几个字段进行初始化,源码如下:
-
首先,Node[] table的初始化长度
length(默认值是16)
,Load factor为负载因子(默认值是0.75)
,
threshold
是HashMap所能容纳的最大数据量的Node(键值对)个数
。threshold = length * Load factor
。 -
也就是说,在数组定义好长度之后,负载因子越大,所能容纳的键值对个数越多。
结合负载因子的定义公式可知,threshold就是在此Load factor
和length(
数组长度)对应下允许的最大元素数目,超过这个数目就重新resize(扩容),扩容后的HashMap容量是之前容量的两倍。默认的负载因子0.75是对空间和时间效率的一一个平衡选择,建议大家不要修改,除非在时间和空间比较特殊的情况下,如果内存空间很多而又对时间效率要求很高,可以降低负载因子Load factor的值;相反,如果内存空间紧张而对时间效率要求不高,可以增加负载因子loadFactor的值,这个值可以大于1。 -
size这个字段其实很好理解,就是HashMap中实际存在的键值对数量。注意和table的长度length、容纳最大键值对数量
threshold
区别。而modCount
字段主要用来记录HashMap内部结构发生变化的次数,主要用于迭代的快速失败。强调一点, 内部结构发生变化指的是结构发生变化,例如put新键值对,但是某个key对应的value值被覆盖不属于结构变化。 -
在HashMap中,哈希桶数组table的长度length大小必须为
2的n次方(-定是合数)
,这是一种非常规的设计,常规的设计是把桶的大小设计为素数。相对来说素数导致冲突的概率要小于合数,Hashtable 初始化桶大小为11,就是桶大小设计为素数的应用(Hashtable扩 容后不能保证还是素数)。HashMap采用这种非常规设计,主要是为了在取模和扩容时做优化同时为了减少冲突,HashMap定位哈希桶索引位置时,也加入了高位参与运算的过程。 -
这里存在一个问题,即使负载因子和Hash算法设计的再合理,也免不了会出现拉链过长的情况,-旦出现拉链过长,则会严重影响HashMap的性能。
-
于是,在DK1.8版本中,对数据结构做了进一步的优化,引入了红黑树。而当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能,其中会用到红黑树的插入、删除、查找等算法。
-
功能实现-方法
HashMap的内部功能实现很多,本次主要从根据key获取哈希桶数组索引位置、put方法的详细执行、扩容过程三个具有代表性的点深入展开讲解。
- 确定哈希桶数组索引位置
不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过HashMap
的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的元素位置尽量分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,不用遍历链表,大大优化了查询的效率。HashMap定位数组索引位置,直接决定了hash方法的离散性能。先看看源码的实现(方法一+方法二):
- 这里的Hash算法本质上就是三步:取key的hashCode值、高位运算、取模运算。
- 对于任意给定的对象,只要它的hashCode()返回值相同,那么程序调用方法一所计算得到的Hash码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,模运算的消耗还是比较大的,在HashMap中是这样做的:调用方法二来计算该对象应该保存在table数组的哪个索引处。
- 这个方法非常巧妙,它通过
h&(table.length-1)
来得到该对象的保存位,而HashMap底层数组的长度总是2的n次方,这是HashMap在速度上的优化。当length总是2的n次方时,h& (length-1)
运算等价于对length取模
,也就是h%length
,但是&比%具有更高的效率。 - 在JDK1.8的实现中,优化了高位运算的算法,通过hashCode()的 高16位异或低16位实现的:
(h = k.hashCode() ^(h>> 16)
,主要是从速度、功效、质量来考虑的,这么做可以在数组table的length比较小的时候,也能保证考虑到高低Bit都参与到Hash的计算中,同时不会有太大的开销。
下面举例说明下,n为table的长度。
2.HashMap的put方法
HashMap的put方法
执行过程可以通过下图来理解。
- ①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩 容;
- ②.根据键值key计算hash值得到插入的数组索引i,如果table[i]== null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;
- ③.判断table[i]的首个元素是否和key-样,如果相同直接覆盖value,否则转向④,这里的相同指的是
hashCode以及equals; . - ④.判断table[i]是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;
- ⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
- ⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。
JDK1.8HashMap的put方法源码如下:
3.扩容机制
扩容(resize)就是重新计算容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,对象就需要扩大数组的长度,以便能装入更多的元素。当然Java里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像我们用一个小桶装水,如果想装更多的水,就得换大水桶。
我们分析下resize的源码,鉴于JDK1.8融入了红黑树,较复杂,为了便于理解我们仍然使用JDK1.7的代码,好理解一些,本质上区别不大。
这里就是使用一个容量更大的数组来代替已有的容量小的数组,transfer()方法
将原有Entry数组的元素拷贝到新的Entry数组里。
newTable[i]
的引用赋给了e.next
,也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置;这样先放在一个索引上的元素终会被放到Entry链的尾部(如果发生了hash冲突的话),这一点和Jdk1.8有区别。在旧数组中同一条Entry链上的元素,通过重新计算索引位置后,有可能被放到了新数组的不同位置上。- 下面举个例子说明下扩容过程。假设了我们的hash算法就是简单的用
key mod
一下 表的大小(也就是数组的长度)。其中的哈希桶数组table的size=2,所以key=3、 7、5,put顺序依次为5、7、3。在mod2以后都冲突在table[1]这里了。这里假设负载因子loadFactor=1,即当键值对的实际大小size大于table的实际大小时进行扩容。接下来的三个步骤是哈希桶数组resize成4,然后所有的Node重新rehash的过程。
下面我们讲解下JDK1.8做了哪些优化。经过观测可以发现,我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。看下图可以明白这句话的意思,n为table的长度,图(a) 表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果。
元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:
HashMap 和 HashTable 的区别
HashMap操作注意事项以及优化?
(1)扩容是一个特别耗性能的操作,所以当程序员在使用HashMap的时候,估算map的大小,初始化的时候给一个 大致的数值,避免map进行频繁的扩容。
(2)负载因子是可以修改的,也可以大于1,但是建议不要轻易修改,除非情况非常特殊。
(3) HashMap是线程不安全的,不要在并发的环境中同时操作HashMap,建议使ConcurrentHashMap。
(4) JDK1.8引入红黑树大程度优化了HashMap的性能。