深度学习
文章平均质量分 75
软件班那个学渣
软件班学渣
展开
-
SSH远程连接服务器,linux后台执行耗时程序
深度学习训练深度神经网络的时候,往往需要使用到GPU,GPU作为服务器,可以开多个进程为多个虚拟用户通过ssh或者其他的一些方式进行连接,以便各个用户相互独立的使用GPU资源,不受影响。但是,往往一个用户在通过ssh连接服务器的时候,如果需要训练深度模型,往往需要几个小时,几天甚至几周的时间,这个时候,而有的时候各个用户与服务器的连接不可能一直建立,所以这个时候,后台执行linux程序显得格外的重要。原创 2019-08-28 13:26:57 · 460 阅读 · 2 评论 -
卷积神经网络中卷积核参数计算和卷积操作理解
背景知识卷积神经网络中的卷积操作主要是由:卷积核大小(kearl_size),步长(stride),填充(padding)等决定,根据输入的特征图的in_channel的个数,尺寸以及卷积核大小,步长与填充的关系可以计算出卷积后输出的特征图的out_channel,大小等。相关计算现在假设原图像的输入为in_channelimage_sizeimage_size,卷积操作的卷积核的大...原创 2019-08-29 21:26:58 · 4458 阅读 · 1 评论 -
Resnet论文解读以及pytorch在cifar-10上的Resnet模型
Resnet的基本原理Resnet(残差网络),是基于CNN的一种模型,示意图如下:如上图所示,传统的CNN网络模型,只有输入x–>F(x)–>relu(F(x)),也就是图中的left部分,而传统的CNN模型在训练的时候,随着网络层数的增加,会出现很难训练的情况(主要是由于梯度爆炸或者梯度消失的问题),由此,华人科学家 何凯明 大神提出了Resnet结构,简单来讲Resne...原创 2019-08-30 19:07:18 · 532 阅读 · 1 评论 -
pytorch指定GPU训练模型
PyTorch默认使用从0开始的GPU,如果默认GPU0正在运行程序,需要指定其他GPU。有如下两种方法来指定需要使用的GPU。类似tensorflow指定GPU的方式,使用CUDA_VISIBLE_DEVICES。直接终端中设定: CUDA_VISIBLE_DEVICES=1 python my_script.pypython代码中设定: import os ...原创 2019-08-31 12:21:51 · 944 阅读 · 0 评论 -
DensetNet原理简述以及pytorch在cifar-10上的训练
1. DensetNet背景介绍1.卷积神经网络CNN在计算机视觉物体识别上优势显著,典型的模型有:LeNet5, VGG, Highway Network, Residual Network.2.CNN越深则效果越好,但是,会面临梯度弥散的问题,经过层数越多,则前面的信息就会渐渐减弱和消散。3.目前已有很多措施去解决以上困境:(1)Highway Network,Residual Net...原创 2019-09-11 15:42:40 · 1276 阅读 · 0 评论