题目说明
Given a tree, rearrange the tree in in-order so that the leftmost node in the tree is now the
root of the tree, and every node has no left child and only 1 right child.
Example 1:
Input: [5,3,6,2,4,null,8,1,null,null,null,7,9]
5
/ \
3 6
/ \ \
2 4 8
/ / \
1 7 9
Output: [1,null,2,null,3,null,4,null,5,null,6,null,7,null,8,null,9]
1
\
2
\
3
\
4
\
5
\
6
\
7
\
8
\
9
分析
思路其实大家都能想到,先中序遍历原有树,然后再构造新的树,不断插入右节点。但是对于和我一样的新手宝宝,写代码过程中还是会有很多问题,我把写的过程遇到的一些问题都注释在代码里了。大概就是申请一个整型的vector,然后定义一个cur的指针遍历就可以了。
最终代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
//需要将该函数放在increasingBST前面
void Inorder(TreeNode* node, vector<int>& order) {
//这句必须加上,考虑空节点,且不能使用return NULL
if(node == NULL) return;
Inorder(node->left, order);
order.push_back(node->val);
Inorder(node->right, order);
}
TreeNode* increasingBST(TreeNode* root) {
if(!root) return NULL;
vector<int> order;
//对原来树进行中序遍历,并存入order的数组中
Inorder(root, order);
//将排好序的第一个赋值给root根节点
root = new TreeNode(order[0]);
//定义指向root的cur指针,用它来做遍历赋值
TreeNode* cur = root;
//如果i从0开始,输出为第一个元素1,因为指向root的cur被赋予了新的值order[0]后就指向了新的right(cur->right)
//这里会出错,不能让cur指向root,又指向cur->right
//而如果i从1开始,因为cur->right是没有的节点,所以可以通过new为其新申请
for(int i = 1; i < order.size(); ++i) {
//申请新的右节点,左节点为null
cur->right = new TreeNode(order[i]);
cur = cur->right;
}
return root;
}
};