DYJ-无环图应用 试编写一算法,给有向无环图G中每个顶点赋以一个整数序号,并满足以下条件:若从顶点i至顶点j有一条弧,则应使i<j。(提示:存储结构采用邻接表,采用拓扑排序算法实现)

DYJ-无环图应用

【问题描述】

试编写一算法,给有向无环图G中每个顶点赋以一个整数序号,并满足以下条件:若从顶点i至顶点j有一条弧,则应使i<j。(提示:存储结构采用邻接表,采用拓扑排序算法实现)

【输入形式】

输入图中顶点数和弧数,输入顶点的值序列(值是字符类型),输入弧的顶点偶对序列。

【输出形式】

按顶点值得输入顺序输出各顶点的值和编号序列。

【样例输入】

例如:下图
cg
对应的输入如下:
4,4
abcd
0,1
2,3

【样例输出】

对应的输出如下:
a,1;b,2;c,3;d,4;

在这里插入图片描述

C++代码

#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
struct edgenode {
	int adjvertex;
	edgenode* next;
};
struct vertnode {
	char vertex;
	edgenode* firstedge;
	int indegree;
	int number;
};
struct AMgraph {
	vertnode vertlist[100];
	int n, e;
};
AMgraph* Creategraph() {
	AMgraph* g = new AMgraph;
	scanf("%d,%d", &g->n, &g->e);
	for (int i = 0; i < g->n; i++) {
		cin >> g->vertlist[i].vertex;
		g->vertlist[i].firstedge = new edgenode;
		g->vertlist[i].firstedge->next = NULL;
		g->vertlist[i].indegree = 0;
	}
	int adj1, adj2;
	edgenode* p, *temp;
	for (int i = 0; i < g->e; i++) {   //根据样例可知要采用尾插法
		scanf("%d,%d", &adj1, &adj2);
		p = new edgenode;
		p->adjvertex = adj2;
		p->next = NULL;
		temp = g->vertlist[adj1].firstedge;
		while (temp->next != NULL)  temp = temp->next;
		temp->next = p;
		g->vertlist[adj2].indegree++;
	}
	return g;
}
void Topologicalsort(AMgraph* g) {   //拓扑排序
	queue<int> q;
	int cnt = 0;
	for (int i = 0; i < g->n; i++)
		if (g->vertlist[i].indegree == 0)  q.push(i);
	int f, inq;
	edgenode* p;
	while (!q.empty()) {
		f = q.front();
		q.pop();
		g->vertlist[f].number = ++cnt;
		for (p = g->vertlist[f].firstedge->next; p; p = p->next) {
			inq = p->adjvertex;
			if ((--g->vertlist[inq].indegree) == 0)
				q.push(inq);
		}
	}
}
void Print(AMgraph* g) {
	for (int i = 0; i < g->n; i++)
		cout << g->vertlist[i].vertex << "," << g->vertlist[i].number << ";";
}
int main() {
	AMgraph* g = Creategraph();
	Topologicalsort(g);
	Print(g);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

M_blueberry

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值