自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(38)
  • 收藏
  • 关注

原创 AI 时代,程序员工作变成了 90% 的 Review?谈谈我们该如何“主动进化”

利用每一次报错的机会,强迫自己理解每一个 Bug 背后的计算机原理(网络、OS、JVM),建立自己的底层原理知识库。过去,我们以此为荣:“我精通 Java 语法,我知道怎么手写快排,我能默写 Spring 的 Bean 生命周期。你需要成为团队的“安全守门员”和“代码洁癖患者”,对 AI 的每一行代码保持“零信任”态度。能够迅速定位数据流向,判断这块代码放入现有系统中,会不会破坏微服务的边界,会不会引发循环依赖。如果你不懂原理,只是一遍遍把报错扔给 AI 让它“再试一次”,你就会陷入死循环。

2026-01-15 20:27:32 302

原创 拯救“复读机”:从小模型死循环看 Logits 到 Dist 的全流程采样机制

一旦模型输出了那句“兜底废话”(比如“建议联系物业”),在生成下一个词时,它回头看上下文,发现接这一句最顺口(概率最高)。如果启用了 DRY,那个试图复读的长句子在进入筛选漏斗之前,就会被直接打成负分,根本没有机会进入下一轮。那 5% 的微弱优势被瞬间拉大,复读词的选中率变成了 **99.99%**。假设模型陷入逻辑死角,复读词“建议”的原始概率是 40%,新思路“报警”的概率是 35%。会切掉所有概率低于 2.5% 的词。,彻底解构大模型是如何决定“下一个词”的,并给出终结死循环的“核武器”级配置。

2026-01-14 20:24:48 357

原创 再见 Spec Kit?体验 Gemini CLI Conductor 带来的“全自动”开发流

这样的具体命令,并给出了“如果在底部就滚动,如果在看历史消息就不动”这样细腻的交互逻辑验证点。如果你厌倦了在 Prompt 里小心翼翼地“填空”,不妨试试 Conductor,体验一下把大脑从繁琐流程中解放出来的快感。Spec Kit 依然是学习 DDD(领域驱动设计)和培养系统化思维的绝佳工具,它教会了我们“先思考,再编码”。这种机制保证了下一次任务开始时,AI 依据的是最新的上下文,而不是我上个月写下的旧文档。在初始化时,它会自动扫描你的项目代码库,智能分析出你的技术栈,并生成。

2026-01-13 20:26:46 229

原创 拒绝封号风险:用 Docker 混合架构实现 Gemini CLI 安全多开

因为是直接复用已有的 Token 文件,Google 服务端甚至感觉不到你重新登录了,只是觉得你这个账号又活跃了而已。在 Google 的风控视角下,同一个设备 IP、同一个客户端指纹,短时间内频繁地销毁和创建授权 Session,极易被判定为。当账号 A 没油了,你不需要退出 IDE,不需要改配置,只需要一条命令“穿越”进容器,用账号 B 继续刚才的工作。每天早上,你在自己熟悉的本机终端里,用着顺手的 Shell,消耗。,利用 Docker 容器的隔离性,完美解决了这三个问题。

2026-01-10 20:54:28 864

原创 拒绝 Mock 数据!我用 AI 直接扫描后端代码,一次性生成了可真实运行的前端

虽然我没有给设计稿,但是根据接口信息生成UI需要的元素,并且它生成了一个非常干净、标准的登录卡片,甚至贴心地把“Password”输入框做成了掩码显示,按钮配色也符合现代审美。只要后端业务逻辑(Domain Logic)是清晰的,Gemini Conductor 这样的工具完全可以充当“全栈设计师”,帮我们填补从 API 到 UI 的最后一公里。在传统的前后端分离开发中,甚至是早期的 AI 辅助编程中,我们习惯了先用 Mock 数据。AI 没有因为缺 UI 稿而卡壳,它通过阅读后端代码,完成了一次完美的。

2026-01-09 20:56:33 439

原创 除了“温度”,如何用 Penalty (惩罚) 治好 AI 的“复读机”毛病?

高温提供了随机性,而较高的 Presence Penalty 像鞭子一样赶着 AI 往前走:“这个情节写过了,换下一个!哪怕你把温度调得很高,试图激发 AI 的创造力,它有时依然会陷入死循环,不断重复“我不知道我不知道”,或者像卡带的唱片一样,车轱辘话来回说。**日常微调 (0.1 - 0.6)**:如果你只是觉得 AI 有点啰嗦,设在这个区间就够了。数值越大,惩罚越重,重复越少,AI 越倾向于用新词。因为旧概念相关的词都被“扣分”了,模型为了维持高概率,不得不引入全新的词汇和概念。

2026-01-08 20:14:03 450

原创 告别“凭感觉写代码” (Vibe Coding):Gemini CLI Conductor 实践指南

但当你聊到第 20 句,或者项目逻辑稍微复杂一点时,AI 开始“失忆”了——它忘记了十分钟前定义的变量,幻想出不存在的库,甚至让你在一个 React 项目里安装 jQuery。当你的 Prompt 是英文,AI 生成的文档是英文,最终生成的代码变量命名也是英文时,整个上下文(Context)的一致性会达到最高,从而大幅降低 AI“幻觉”的概率。,你会看到它不仅仅是“写代码”,而是包含了“建立基础架构”、“Mock 数据层”、“实现左侧导航”、“实现中间聊天区”等严谨的步骤。传统模式是“你问,它答”。

2026-01-07 20:33:09 716

原创 Google MusicFX 上手指南:零基础也能当 AI DJ?

MusicFX DJ 将复杂的音乐制作简化为直观的“添加”与“混合”操作。它不仅是一个 AI 音乐生成器,更是一个激发灵感的创意玩具。无论是为了寻找视频配乐,还是单纯享受控制声音的乐趣,它都提供了一个零门槛的入口。

2026-01-05 10:30:51 527

原创 Google Labs 新品实测:Mixboard、Flow 和 Learn Your Way 上手体验

不同于以往单一的“文生图”模式,Mixboard 允许用户将多种素材——例如一张“复古跑车”的图片、一张“赛博朋克霓虹灯”的参考图,以及“孤独的宇航员”的概念词条——放置在一起。Flow 允许创作者在生成后续镜头时,直接引用上一张生成的图片作为参考锚点,从而最大程度保证主角在不同镜头中不发生“换脸”,保持衣着和风格的统一。如果说 2023 年是“对话框(Chatbot)”的元年,那么 2025 年似乎正在成为“工作流(Workflow)”的一年。界面设有一个清晰的时间轴。场景,设计了完全不同的交互形态。

2025-12-30 21:05:12 580

原创 Google Opal 初体验:0 代码手搓一个 YouTube 视频转中文博客 APP

从输入“一句需求”到生成“三个节点的完整应用”,过程完全自动化,且生成的 Prompt 逻辑严密,包含条件判断和循环的高级思维链。与传统的低代码平台不同,Opal 允许用户通过自然语言描述需求,直接生成完整的 AI 工作流。为了确保最终呈现的内容格式统一且符合博客标准,Opal 在输出节点中再次确认了任务目标,将生成的内容进行最终渲染和展示。对方打开链接后,会直接看到一个简洁的界面,只需输入 YouTube 链接,即可获得生成的文章。根据“生成一篇中文博客文章”的指令,Opal 自动编写了一段包含。

2025-12-29 19:03:13 702

原创 告别轮询延迟:基于 SSE + Redis Pub/Sub 构建丝滑的客服聊天系统

发送频率低,完全可以通过标准的 HTTP POST 请求完成。需要实时触达,客服回复后,用户端必须立刻显示。相比 WebSocket,代码量减少约 50%,调试极其方便(直接在浏览器 Network 面板就能看到流)。只有当前打开窗口的用户才占用连接,极大节省服务器资源。依托 Redis Pub/Sub,后端服务器可以随意水平扩容,无需担心连接在某一台机器上导致消息发不过去。技术选型没有最好,只有最合适。对于即时性要求极高(如即时对战游戏)的场景,WebSocket 依然是王者;但对于。

2025-12-29 17:20:12 888

原创 击穿防线:从“12·22”风控事件看下一代直播安全架构的进化

12·22”事件是一个分水岭。安全不是一个静态的功能模块,而是一场动态的博弈。未来的防御系统不能只盯着“正常流量”设计,必须假设系统时刻处于“战时状态”。在源头,我们要比黑产更懂成本控制;在存量,我们要比黑产更有鉴别耐心;在战时,我们要比黑产更懂取舍之道;在模型,我们要比黑产进化得更快更强。处理不了的流量,最好的归宿是丢掉;识别不了的伪装,最终的克星是进化。这就是架构师在面对未来不确定性时,应有的底气。

2025-12-26 20:24:32 881

原创 AI 时代的攻防暗战:从“诱导删库”到“钱包耗尽”,必须警惕的 10 大风险

12·22 事件”的毁灭性后果提醒着业界:数字世界的地基并不像想象中那么坚固。在 AI 时代,攻击的门槛变得前所未有的低——攻击者不需要精通复杂的汇编语言,只需要会“说话”,会“画画”,甚至只需要一张胶带。作为开发者和架构师,在追求 AI 落地速度、惊叹于其智能的同时,必须建立(设计之初即安全) 的理念。不要等到账单爆炸、隐私泄露,或者数据库被清空的那一刻,才想起给 AI 系统装上一把锁。

2025-12-26 10:16:54 780

原创 如何设计高效的客服工作台会话列表?拒绝照搬通用 IM 模式

即会话**“进入待办队列的时间” (Enqueued Time)**。设计 B 端产品,尤其是高频操作的工具类产品,不能只看“功能有无”,更要看“效率高低”。双梯队排序解决了“注意力聚焦”的问题,锚点时间解决了“公平与稳定”的问题。这两者的结合,将杂乱无章的聊天列表,转化为了井井有条的标准化流水线。这不仅仅是代码逻辑的优化,更是对客服人员认知负荷的解放。

2025-12-18 18:22:57 770

原创 Rust 模块化单体架构:告别全局 Migrations,实现真正的模块自治

首先,定义一个标准的结构体用于模块上报信息,并声明inventory// 1. 模块迁移执行器 trait,抹平不同 Migrator 的类型差异// 2. 模块注册项结构体pub get_migration_table_name: fn() -> String, // 关键:获取该模块独立的表名// 3. 告诉 inventory 开始收集这种对象现在,在各个模块内部,开发者只需编写几行声明式代码即可完成迁移配置。命名规范建议模块前缀:与 crate 名称或业务缩写对应(如->ua->

2025-12-13 18:40:13 993

原创 从“字段拆分”到“架构分层”:IM 系统消息状态更新的演进之路

在 IM 系统开发中,发送图片或视频是一个涉及长耗时 I/O 的过程,系统需要频繁更新消息的流转状态(Pending -> Uploading -> Sent)。)时,典型的业务流程如下:用户发送一张图片,服务端先落库占位,随后异步上传文件,最后将状态更新为“发送成功”。:物理层面的整行复制,意味着事务日志(WAL)也要记录这整行的数据,导致磁盘空间和 I/O 压力骤增。原则——不要让一个频繁跳动的心脏(状态字段),长在一个笨重的身体(大宽表/大JSON)里。它的每一行都像一辆重型卡车。

2025-12-11 19:25:46 944

原创 PostgreSQL 实践:JSON vs JSONB

随着 PostgreSQL 成为新一代“全能型数据库”,JSON 支持也让它具备了替代 MongoDB 的能力。本文将从底层机制、性能、索引、应用场景和 Spring Boot 实战全面解析两者的差异,并给出最稳的选型建议。两者虽然都能存 JSON,但底层结构、性能表现、索引能力却完全不同。—— 为什么 99% 的场景使用 JSONB?🔹 JSONB:结构化的二进制存储(性能王者)按文本原样存储(空格、换行、缩进都会保留)适合:只保存不查询的原始报文、审计日志。你需要保留原始格式(顺序、空格、换行);

2025-12-10 20:27:19 938

原创 Spring Boot 事务实战:如何优雅解决 DB 与 MQ 的“双写不一致”?

在分布式系统中,“先存数据库还是先发消息”是一个经典的架构难题。特别是在 IM 系统的多媒体消息处理场景中,如果处理顺序不当,不仅会导致对象存储(OSS)中产生无法回收的“孤儿文件”,还会引发并发重复处理的问题。:若未加控制,两个线程可能都会发出 NATS 消息,导致 Worker 下载上传两次同样的图片,浪费带宽和计算资源。回调将永远不会被执行,NATS 消息也就不会发出,从而从源头上避免了 OSS 资源的浪费。在处理“数据库事务”与“外部系统调用(MQ/RPC)”混合的业务场景时,

2025-12-09 20:37:07 576 1

原创 Spring Boot + NATS 实战:如何让 IM 系统处理图片/视频像处理文本一样快?

当客户端点击发送后,立刻在聊天窗口插入一条消息气泡。:在对接第三方 IM(如企业微信、WhatsApp)时,文本消息通常能毫秒级响应,但一旦涉及图片、语音或视频等多媒体文件,系统吞吐量往往会急剧下降,甚至引发消息积压和应用崩溃。对于普通的文本消息,处理流程相对简单:接收、存储、推送,整个过程通常在几十毫秒内完成。基于预先生成的 URL,系统可以在文件上传完成前,先将消息推送至前端。这种异步化、最终一致性的设计思路,不仅适用于 IM 系统,对于任何涉及第三方资源转存或重型计算的场景均具有重要的参考价值。

2025-12-09 10:38:25 1145 1

原创 会话更新的防抖进化 —— 填补“乱序”与“丢数据”的深坑

摘要:在上一篇文章中,我们设计了一个基于 Actor 模式的“写缓冲(Write-Behind)”防抖系统,看似美好,但是还是有消息乱序与数据丢失的隐患。本文将详细记录 V2 版本的重构思路:通过引入 阻塞背压 (Blocking Backpressure)、延迟确认 (Deferred ACK) 和 **事件循环 (Event Loop)**,构建一个更加健壮、严谨的防抖系统。在构建即时通讯系统的会话列表时,核心矛盾在于海量消息吞吐与数据库有限写入能力之间的冲突。业务要求每条消息都能更新会话的 和 (摘

2025-12-05 20:48:31 632

原创 如何高效且优雅地批量处理会话更新?

在高并发系统的设计中,“克制”比“速度”更重要。通过结合的 LRU 特性、全局防抖机制以及严格的容量控制,我们实现了一个健壮的“写缓冲”层。它像一个水库,在洪水期(高并发)蓄水调峰,在枯水期(低并发)平稳排放。这种既能大幅降低数据库负载,又能严格保证内存安全的设计,才是真正“高效且优雅”的架构实践。

2025-12-04 10:18:50 1003

原创 拒绝 “LGTM”:如何构建 AI 首席架构师进行防御性 Code Review

许多 AI Review 效果不佳,原因在于 Prompt 缺乏对“审查逻辑”的定义。如果仅要求“检查代码”,AI 往往只能发现语法或风格问题。为了挖掘架构级隐患,必须在 Prompt 中植入 Reasoning Framework (思维链),要求 AI 扮演“首席架构师”,并在后台执行深度推演。这套 AI Code Review 方案不仅仅是一个工具,更是一种技术标准的固化。它将团队积累的“最佳实践”(如禁止事务自调用、防止响应式丢失)编写进 Prompt 中,使其成为可复用、可执行的规则。

2025-12-04 10:10:15 1000

原创 拒绝 if-else:利用 Jackson 多态注解 (@JsonTypeInfo) 重构复杂的 IM 消息处理逻辑

通常的多态 JSON,类型字段是在对象内部的。通常,上游为了省事,会丢给你一个聚合的 JSON。在后端开发中,对接第三方 IM 系统(如微信、企业微信、或 RPA 机器人)的回调接口往往是一场噩梦。:每种消息的特有逻辑(如生成快照、格式化)封装在各自的类中,不再散落在 Service 的。后端开发不仅仅是 CRUD,合理利用库的高级特性可以极大地提升代码的可读性和健壮性。:我们可以在这里定义抽象方法,利用多态特性将业务逻辑(如生成摘要)下沉到子类中。我们的目标是:让 Jackson 在解析 JSON 时,

2025-12-01 20:34:36 766

原创 拒绝 Token 焦虑:我在 Spec Kit 开发中总结的 3 个“抠门

当你学会像“审计员”一样去管理 AI 的 Context,你会发现,你不仅省下了一大笔 Token 费用,更重要的是,AI 变得更聪明、更懂你了。:此时 AI 已经有了正确的“上下文”(即第一步生成的代码),它写出来的业务逻辑会非常精准,且因为单次输出量减少,极大降低了幻觉概率。阶段,如果任务过于庞大,AI 往往会生成一半就中断(Output Token Limit),或者后面生成的代码逻辑混乱。,更糟糕的是,上下文越长,AI 的“注意力”越分散,越容易出现遗忘前文或产生幻觉的情况?

2025-11-29 19:06:02 826

原创 Spec Kit 踩坑实录:为什么我严格走了7步,AI 生成的代码还是没法用?

如果 Plan 里出现了错误的技术选型(例如用错了数据库、ORM 框架),必须立刻打回重做,绝不能想着“生成代码后再改”。:除了回答 AI 的问题,还要主动思考:“你生成的文档是否包含了我没说、但我默认你该知道的约束?AI 生成代码时彻底放飞自我,刚才在 Plan 里没拦住的错误,在这里全部变成了具体的 Bug。时,生成的代码完全不可用:数据库方言错了、重复造了已有的轮子、业务逻辑不仅没对齐甚至还跑偏了。AI 在文档里悄悄“脑补”了一些我没提到、但它认为合理的逻辑,或者定义了错误的数据结构。

2025-11-28 20:32:58 399

原创 Spring Boot 三层架构解密:从 Controller 到 Repository 的数据之旅

今天,我们就来拆解 Controller、Service、Repository 这三大核心组件,并深入探讨 DTO 与 Entity 在这场数据之旅中扮演的关键角色。:有时一个 API 需要返回两张表的数据(如:用户信息 + 订单概况),DTO 可以把多个 Entity 的数据聚合在一起。他不管这道菜是给谁吃的,也不管好不好吃,他只负责把食材(数据)拿出来,或者把成品存进去。,负责核心加工,它把工单(DTO)变成产品(Entity),或者把产品包装成商品(DTO)。,也不写复杂的业务逻辑。

2025-11-27 19:05:08 237

原创 Spec Kit 实战:如何编写 Constitution 中的“技术栈” (Tech Stack)

今天,结合一个后端技术规范(Java 25 + Spring AI + GraalVM),我们来拆解如何在 Constitution 中编写技术条款,将资深架构师的经验转化为 AI 的长期记忆。:这样写之后,AI 生成的 Entity 就不再是臃肿的 Java Bean,而是清爽、现代的链式对象。你需要把团队的最佳实践固化为 AI 的肌肉记忆,让 AI 写出的代码像是由同一个资深工程师完成的。这是宪法中的“铁律”。它懂 Java,但可能给你写 Java 8 的老代码,而你的项目是 Java 25。

2025-11-26 20:11:29 444

原创 如何用 AI 辅助翻译学习?我的三步进阶实录

大家在学英语翻译时,是不是经常有这种感觉:自己写出来的句子“惨不忍睹”,直接看参考答案又觉得“一看就会,一合书就废”?这意味着当自由说话被压制后,取而代之的不仅仅是言语,而是一种扭曲的“行为模式”。我把原文和我的初稿发给了 AI,让它充当“严厉的语法老师”。下次遇到长难句,不妨也试着让 AI 帮你“拆解”一下,你会发现标准答案背后的逻辑,比答案本身更有趣。如果我不改这个词,整句话的意思就变成了“当批评被赞赏时”,和原文南辕北辙!,复盘一下我是如何利用 AI 把一句“中式英语”进化成“学术表达”的。

2025-11-25 20:51:24 500

原创 给需求文档写“单元测试”:打造自带质量门禁的 AI 产品经理

在 AI 辅助开发的浪潮中,我们习惯了用 AI 写代码,也开始尝试用 AI 写需求文档(Spec)。但你是否发现,AI 写出来的文档往往有一种“精致的平庸感”?中,把“需求文档”视为“代码”进行 Lint 和 Test 时,AI 就不再是一个只会废话的聊天机器人,而是一个严谨、可信赖的数字产品专家。AI 扮演“初级产品经理”,根据你的自然语言描述(如“加个微信登录”),结合行业标准,起草第一版 Spec。前者是 QA 的工作,后者才是产品经理(或 AI Agent)应该对自己产出物做的“单元测试”。

2025-11-24 20:57:55 393

原创 拒绝“大宽表”进阶篇:如何设计十亿级 IM 消息系统的“会话架构”?

无论对方是一个“人”还是一个“群”,对系统来说,都只是一个**“聊天对象”**。基于全局 ID,我们可以将消息表简化到极致。要解决这个问题,我们需要引入一个核心概念:**会话 (Session)**。我们采用**“空间换时间”**的策略,维护一张“只有最新状态”的表。**Contact ID (联系人)**:生成的 ID 必定带有。“写扩散”**策略,设计一个能抗住十亿级数据的 IM 架构。**Group ID (群组)**:生成的 ID 必定带有。今天,我们深入数据库底层,聊聊如何通过**“会话归一化”

2025-11-21 20:01:39 764

原创 系统设计:面对多方异构数据,如何设计高扩展的数据库架构?

你的业务逻辑(比如 AI 回复、订单处理)不应该关心“OpenID”是什么,也不应该关心消息是 XML 还是 JSON。无论第三方推送的是 XML 还是 JSON,是加密的还是明文的,我们用一个。通过这三张表的策略,我们把复杂的异构数据问题,转化为了简单的流水线处理问题。,完全不需要知道这条消息是微信 XML 解析出来的,还是抖音 JSON 解析出来的。在这一层,我们需要把“千奇百怪”的外部数据,清洗成“整齐划一”的内部格式。:即使解析服务挂了,网关只要把数据写入这张表,数据就安全了。

2025-11-20 20:56:59 880

原创 Task 阶段如何将 Plan 转化为可合并的 Pull Requests

只有原子化的任务,才能让 AI 编码助手聚焦于单个目标(例如:“仅实现数据模型”),从而输出更高质量、更符合规范的代码片段,避免因任务范围过大而导致 AI 陷入困境。Tasks 阶段的核心目标,就是将一个大的、复杂的 Plan,分解成一系列小的、原子的、可独立 Review 和合并的 Pull Requests (PRs)。确保我们不是在漫无目的地编码,而是在执行一份经过精心设计的、原子化的、高质量的工程蓝图。原子性任务是指每个任务/PR 只做一件事,并且是独立的、完整的、可测试的。

2025-11-18 18:16:37 236

原创 Spec Kit 的技术中枢:Plan 阶段如何将需求转化为 API 与架构设计

plan.md是 Spec-Driven Development 流程中不可或缺的中间件。它成功地桥接了产品的价值和代码的实现,使得整个开发流程不再是瀑布式的猜测,而是清晰、可回溯的。一个高质量的plan.md能够最大化 AI 的效率和代码的规范性。它不仅告诉 AI 写什么代码,更告诉 AI代码应该如何组织和交互。现在,AI 已经掌握了所有的先决条件。在下一阶段,它将把这个详细的plan.md转化为一个个可执行的代码任务。在接下来的系列文章中,我将会探索AI 如何基于这两份文件,进入。

2025-11-18 10:18:36 804

原创 Rust 中方法名到 SQL 语句的智能解析与构造

宏不仅仅是一个代码生成工具,它代表了一种声明式数据访问的新范式。⚡ 极致效率:声明即实现,开发速度提升5-10倍🔒 绝对安全:编译时检查确保所有查询的类型安全📚 规范统一:强制执行一致的代码标准和命名约定🧪 测试友好:开箱即用的Mock支持,测试编写效率大幅提升🛠 灵活演进:复杂场景仍可手写实现,兼顾简单与复杂需求在Rust强大的元编程能力支持下,我们能够构建出这样既智能又实用的开发工具。这不仅是技术的进步,更是开发体验的革新——让我们能够更专注于业务逻辑本身,而不是重复的机械性工作。

2025-11-17 11:29:06 659

原创 告别“模糊需求”:Spec Kit 中的 Specify,AI 时代的精确化 PRD

在上一篇文章《告别“随心所欲”编程:Spec Kit 灵魂文件 Constitution 深度解析》中,我们确立了 AI 辅助开发的“宪法”——项目的技术栈和架构约束。通过这份精确化的 PRD,我们将人类对业务和用户的深刻洞察,清晰无误地传递给了 AI 编码助手。在 Spec Kit 的流程中,在这一阶段,开发者或产品经理向 AI 编码助手提供功能的高层描述,而 AI 的任务是基于这些输入,自动生成一份详细、结构化的。的内容,Specification 文档在项目初期就划清了界限,避免了不必要的功能膨胀。

2025-11-15 19:03:06 779

原创 告别“随心所欲”编程:Spec Kit 灵魂文件 Constitution 深度解析

阶段,AI 必须确保生成的代码满足 Constitution 中规定的质量标准(例如 90% 的测试覆盖率)。,它在代码生成前就设定了边界和标准,确保 AI 的每一个输出都符合这些预设的、严格的、面向未来的项目标准。,确保无论是 AI 还是人类,都遵循相同的技术和质量标准,为项目设立一个永恒的“北极星”,保证代码的长期。)时,AI 必须基于 Constitution 中规定的技术栈(例如必须使用 React)来设计方案。花时间精心起草这份文件,将为后续的开发工作节省大量返工和调试的时间。

2025-11-14 20:35:19 709

原创 从意图到代码:掌握 Speckit 的七大角色与 AI 提示策略

本文将深入解析 Speckit 流程中的七个关键角色与阶段,并提供每个阶段的高效 AI 提示策略,帮助你从被动的代码调试者转型为主动的系统架构师。这种转变不仅提升了个人效能,更重要的是建立了一套可复制、可扩展的智能开发体系,让软件交付从“手工作坊”迈向“智能工厂”的新时代。这个高度迭代、以人为核心的流程强调“契约优先”的开发哲学。为核心的清晰工作流,它让 AI 成为可预测、可控制的开发伙伴,显著提升开发效率与代码质量。通过掌握这七个角色的定义和相应的 AI 提示策略,你将完成从被动的代码调试者到主动的。

2025-11-13 21:08:43 973

原创 行为驱动开发(BDD)的核心:Given-When-Then

这些场景专门用于验证系统在接收到错误输入或遇到非活跃用户时的健壮性,确保错误提示清晰且符合业务预期。它将复杂的业务逻辑分解为清晰的叙事步骤,是团队协作的基石。模式,系统性地覆盖用户密码登录功能的核心成功路径、用户状态检查和异常错误处理。获得一套完整的、高可读性的测试用例,并确保代码始终符合最初的业务意图。触发被测试的代码路径,通常对应于应用服务或控制器的一个方法调用。将抽象的需求转化为清晰、可执行的测试步骤,直接驱动代码实现。第二部分则通过用户登录功能,展示。块中的表格清晰地定义了测试所需的所有用户状态。

2025-11-12 21:22:44 533

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除