TL3562/3568移植无锡沐创N500L-AM4驱动进内核源码,报错及其解决方案

前言

        创龙官方提供的资料无锡沐创N500L-AM4驱动是rnpgbe-0.1.0.rc60-dd9f3cf.tar.gz;无锡沐创官方,截止目前,最新驱动是rnpgbe-0.2.3-f26b9a4.tar.gz。考虑到开发的稳妥性,先选用创龙尝试过的rnpgbe-0.1.0.rc60-dd9f3cf.tar.gz来移植,将他解压出来,后文将其简称“官方包”。

        目标环境:TL3562 Ubuntu环境(不是buildroot)kernel 5.15

        根据创龙官方提供的资料,来移植,会有些问题,创龙自己测试是编译成模块再移植到系统里来测试的,没有移植到内核源码中。为排查问题,花费了1.5天的时间,凸(艹皿艹 )。

移植过程及遇到的问题

        根据rnpgbe-0.1.0.rc60-dd9f3cf.tar.gz中的README文件中所述:

  • 先将官方包里的scr文件夹中文件,复制到内核源码中。但是kernel/drivers/net/ethernet下没有mucse文件夹,需要手动创建,然后进入musce文件夹,再创建一个rnpgbe文件夹。再开始复制:把官方包里的scr/目录下所有文件复制到kernel/drivers/net/ethernet/musce/rnpgbe/目录下。
  • 然后把官方包里kconfig_file文件夹中的Kconfig、Makefile两个文件,复制到kernel/drivers/net/ethernet/musce/目录下。
  • 将kernel/drivers/net/ethernet/musce/rn
内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例行实践运行,重点关注目标函数设计、CPO算法改策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星羽空间

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值