浅谈“如何重塑数学基础?”

15 篇文章 0 订阅
11 篇文章 0 订阅

导言:对于一个理工科博士而言,所需要的基础无非是:数学+英语+计算机+手头自己课题研究的方向的前沿论文。

重建数学知识大厦,主要重点构建跟自己学科方向密切相关的数学基础知识。这其实不难,因为随着年龄的增长,我们的学习能力增强了。记忆力下降,理解力上升。其中,最最困难的不是补基础知识,而是更改一些已经很难改变的“坏习惯”。比如成年人学武术、打篮球、游泳比小孩子要快一点,上手很快,但是很难成为高手。因为很多既成的习惯和意识很难让我们在关键技术细节上有质的突破。

做科研一样,知识好补,但是我们很多坏的“思维习惯”却很难改变了。这是造成大龄“后进”学者(通过后期恶补基础)很难干过拥有同等知识容量的青年学者。

改习惯很难,并非不能实现。我小时候走路是外八字,非常难看,随我爸,常常被人嘲笑。初一时,意识到这个问题,于是一个学期,我每天早上上学时都刻意调整走路习惯,后面就走得正常了。当然,年龄越大,改习惯的成本越高,包括时间和精力,所以一定要改掉一些最最急迫的坏习惯。我现在想通过跟一流学者的交流和对比中,观察发现自己的一些“思维”上的坏习惯,然后改掉。最明显的一个就是提问。你好不好问?问题中抓住关键点的问题的比例高不高?是问为什么的时候多还是问怎么做的时候多?你阐述一个现象的时候习惯是通过数学定理证明的方式严谨证明,或者是通过实验的方式实证,还是通过看似主观的臆想(一段仅凭直觉的,没有依据的,逻辑不严谨的话语)。
如何重塑数学基础?

不管读哪一门学科,如果念到博士及以上阶段,都有基础知识匮乏的感觉,想补基础知识。可是怎么补呢?

由于自己的专业是数学,所以不妨就“一个博士生如何补数学基础?”这个问题展开讨论。

最傻的方式就是从小学、初中数学开始补,一直补到大学、研究生的数学知识。这样效率非常低,而且不一定有用。一般来讲,整个数学王国非常庞大,根本不可能在较短的时间补上所有数学分支的知识。而且,数学知识一定是要学得有深度才用的上,数学分支那么多,而且都要学到可以解决当前博士研究课题的深度,怎么可能?

一个更可行的方式是“缺什么补什么”,有点像“深度优先搜索”。不断读自己方向的好文章,发现有不懂的地方就去查相关资料,如果在相关资料中还有不懂的地方,再去查那个知识点的相关资料,一直查下去,就是一个在你的“知识树”上的“深度优先”搜索,直到到达某个“叶子节点”——你懂的知识,然后回过头来理解和吸收这条深度优先探索树上所有未知知识点。以这样方式学习的话,效率最高。通过专业领域所研究方向的文章(样本),自动会帮你按出现频率展现出这个领域你所研究的方向中你还不明白的知识点。你会按知识点出现的频率(可以认为这是知识点的重要程度),有重点地科学地补充上自己所缺失的所有知识点。

综上所述,一个博士生最有效的学习方式一定是——多读文章,搞清楚每一篇文章每一个细节。前期会非常辛苦,后期就如鱼得水了。

如果你是一个对自己要求较高的博士,不单单只要求上手一个领域,并做几篇论文够毕业就行了,而是想有朝一日成为这个领域牛人之一,那么还是要补些大盘基础的。怎么补呢?

由于自己研究生学的是运筹学与控制论,主要研究算法优化方向,而现如今算法优化和统计学、机器学习、大数据又有密切的关系。在这些学科方向里面,我最感兴趣的就是统计优化方向。所以就统计优化方向,我谈一下怎么恶补基础吧。

我们先补最相关的知识吧!

统计学:

抽样理论、假设检验、非参数统计、方差分析、相关回归分析、统计推断、贝叶斯统计、试验设计、多元分析
、统计判决理论、时间序列分析;

概率论

几何概率、概率分布、极限理论、随机过程、马尔可夫过程、随机分析、鞅论、应用概率论

运筹优化:

优化建模模型和算法设计方面

线性规划、非线性规划、动态规划 、组合最优化、参数规划、整数规划 、随机规划、排队论 、对策论、决策论、库存论、搜索论、图论、统筹论、最优化;

如何让自己的算法在矩阵类计算上跑得更快?任何一个统计优化算法最底层的设计一定跟矩阵数值计算有关。这部分做好了,整个算法又是一个多项式时间的好算法,执行效率一定高。

算法的内核设计方面(实质是计算数学内容)

插值法与逼近论 、数值代数、连续问题离散化方法、随机数值实验、误差分析 、《矩阵分析》、《计算方法》、《数值优化方法》;

再来看一下“道”级别的方法论知识(实质是逻辑与基础的内容)

演绎逻辑学、证明论、递归论、模型论、公理集合论;

在学习以上知识点的过程中,一定不是面面俱到学的,而是抓住学个学科方向最最核心的模型,最最重要的几个定理,最最典型的几个方法。然后把“大头”和“要领”抓住了,后期肯定是长期在这个领域工作的。通过“打游击”的方式再把一些次要而且用得上的边边角角的知识慢慢补上。

在实际工作中,绝大多数学者只会记住一些最最重要的结论,对于一些次要的结论知道它属于哪个学科,大致在那本专著上看过就可以了。要用的时候再去找,再去理解一下,就可以用了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我为峰666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值