- 博客(37)
- 资源 (3)
- 收藏
- 关注
原创 Ubuntu16.04 LTS编译OpenVINO 2021.4
ubuntu16.04 编译openvino2021sudo add-apt-repository ppa:deadsnakes/ppasudo apt-get updatesudo apt install python3.8 python3.8-dev更新pipsudo apt-get install python3.8-distutilswget https://bootstrap.pypa.io/get-pip.py sudo python3.8 get-pip.py
2022-04-08 17:02:38 2560
原创 CMakeLists.txt语法简介(验证通过)
文章目录一、Cmake 简介二、常用命令1. 指定 cmake 的最小版本2.设置项目名称3.设置编译类型4. 指定编译包含的源文件5.查找指定的库文件6.设置包含的目录7.设置链接库搜索目录8. 设置 target 需要链接的库9. 设置变量10.条件控制三、常用变量四、cv项目cmakelists五、参考一、Cmake 简介cmake 是一个跨平台、开源的构建系统。它是一个集软件构建、测试、打包于一身的软件。它使用与平台和编译器独立的配置文件来对软件编译过程进行控制。二、常用命令1. 指定 cm
2020-10-10 16:59:08 694
原创 Jupyter Notebook更改默认文件目录
查询Jupyter notebook 配置文件路径,输入如下命令jupyter notebook --generate-config查询配置行#c.NotebookApp.notebook_dir = ‘’修改文件删除 #, 在=后添加希望存储的路径保存修改重启jupyter notebook
2020-09-20 09:40:09 257
原创 # OpenCV 显示文字相关函数
文章目录文字结构文字输出文字结构函数: CvFont()定义:/** Font structure */typedef struct CvFont{const char* nameFont; //Qt:nameFontCvScalar color; //Qt:ColorFont -> cvScalar(blue_component, green_component, red_component[, alpha_component]) int f
2020-09-15 11:55:12 343
原创 No module named ‘setuptools‘解决方法(亲测有效)
No module named ‘setuptools’文章目录No module named 'setuptools'问题:解决方法:问题:No module named 'setuptools’解决方法:sudo apt-get install python3-setuptools
2020-09-12 15:40:06 11268 1
原创 github下载速度慢解决方案
提示:系统 Ubuntu18.04 or Win10文章目录配置host文件配置代理使用码云配置多线程下载器Win10Linux参考配置host文件操作host文件末尾添加如下两行:151.101.72.249 github.http://global.ssl.fastly.net 192.30.253.112 github.com刷新DNS缓存Windows:ipconfig/flushdnsLinux:安装NSCD(name service cache daemon
2020-09-12 09:55:07 520
原创 Anaconda常用命令(Linux系统)
文章目录配置镜像查看虚拟环境创建虚拟环境删除虚拟环境激活虚拟环境退出虚拟环境参考配置镜像生成.condarc文件conda config --set show_channel_urls yes在配置文件(.condarc)中添加以下内容channels: - defaultsshow_channel_urls: truechannel_alias: https://mirrors.tuna.tsinghua.edu.cn/anacondadefault_channels:
2020-09-11 15:11:36 845
原创 Python 使用pip安装OpenCV2
文章目录安装pip命令(下载、安装)安装Python版本的opencv安装pip命令(下载、安装)wget https://bootstrap.pypa.io/get-pip.py --no-check-certificatepython get-pip.py安装Python版本的opencvpip install opencv-python
2020-09-11 13:29:57 3005
原创 Linux设置与取消代理
文章目录1.设置代理2.取消代理3.验证代理是否成功4.问题1.设置代理export http_proxy=ip地址:端口号export https_proxy=ip地址:端口号2.取消代理unset http_proxyunset https_proxy3.验证代理是否成功命令curl cip.cc4.问题提示未安装curlsudo apt-get updatesudo apt install curl...
2020-09-10 21:08:14 130225
原创 Anaconda安装Caffe
Anaconda安装Caffe提示:电脑系统:ubuntu18.04,低版本系统可能无法使用1. 创建虚拟环境conda create -n 虚拟环境名 python=3.6 -c defaults2. 激活虚拟环境conda activate 虚拟环境名3. 安装Caffeconda install -c defaults caffe-gpu #GPU版本conda install -c defaults caffe-cpu #CPU版本4. 验证是否安装成功pyth
2020-09-10 20:25:26 1663
原创 基于Docker安装Caffe
文章目录1. [安装docker](https://blog.csdn.net/qq_25736745/article/details/108513464)2.基于Docker安装Caffe3.Docker下使用caffe参考1. 安装docker2.基于Docker安装Caffe创建caffe镜像命令gpu版本sudo docker pull elezar/caffe:gpucpu版本sudo docker pull elezar/caffe:cpu测试是否安
2020-09-10 15:52:37 338
原创 Ubuntu18.04下Docker CE的安装
文章目录安装(使用版本库)1. 设置版本库2. 安装Docker CE3. 查看是否安装成功使用1. 启动 Docker CE2. 建立 docker 用户组配置 Docker 国内镜像加速参考安装(使用版本库)1. 设置版本库更新系统包索引sudo apt-get update添加HTTPS协议,允许apt从HTTPS安装软件包sudo apt-get install apt-transport-https ca-certificates curl software-pro
2020-09-10 14:32:01 580
原创 Ubuntu18.04.3 LTS + OpenCV3.4.6 + CUDA10.0 + CUDNN Caffe软件下载
文章目录配置环境安装依赖包安装CUDA10.0安装CUDNN安装OpenCV3.4.6安装caffe测试caffe是否安装成功参考相关软件下载提示:为方便文件下载,文末提供CUDA10.0、CUDNN、OpenCV3.4.6、caffe软件包配置环境硬件:Intel® Core™ i9-9900K CPU @ 3.60GHz × 16GeForce RTX 2080 Ti/PCIe/SSE2软件:Ubuntu18.04.3 LTS + OpenCV3.4.6 + CUDA10.0 + C
2020-09-10 11:33:17 500 1
转载 图像相似度算法--SIFT算法详解
图像相似度算法--SIFT算法详解 尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)对于...
2019-09-10 21:00:49 2935
原创 python实现简单计算器(+-*/^())
功能介绍:使用python实现简单的+-*/^()运算.要求:命令行输入表达式 输入10^(-10)~10^(10)整数,且运算结果也属于此范围。 实现简单的+-*/^()运算。 输出结果保留10位有效整数,且不足时不能补零。思路:将任务分解,逐层实现括号里面的运算。实现加减运算——>递归计算所有加减运算。实现乘除运算——>递归实现所有乘除运算。乘方运算——>...
2019-03-07 20:51:47 9991
原创 学习周报(Week 1)
一、学习情况学习并实践机器学习K近邻分类。 预习机器学习实战之决策树编码实现 学习关系型数据库基本知识 python实现简单计算器(+-*/^())二、学习笔记数据库学习笔记如图 2-1 所示。 ...
2019-03-07 20:36:06 489
原创 信息熵的通俗理解
先抛出信息熵公式如下:其中p(xi)代表随机事件xi发生的概率再谈谈信息量信息量就是对信息多少的衡量,就像重量用kg,时间用s一样,我们使用信息量对一个事件或者几句话里面包含的信息进行度量其中概率越小的事件携带的信息量越大。比如 对象分手 这件事肯定没有 北京地震 来的震撼。从上面这句话可以得出,信息量随着概率增加递减,但是衡量...
2018-10-29 16:29:06 1741
转载 最大似然估计(Maximum likelihood estimation)
最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”,利用已知样本结果(统计概率)反推最有可能导致这样结果的参数值。简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知。我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差。最大似然估...
2018-10-25 15:22:01 5981
原创 客户端与服务器端建立连接的过程
一、概述学习计算机其实就是在通晓原理的基础上借助实践验证想法。王阳明的“知行合一”用在计算机上,也是十分的贴切。这里先说明两个概念 Socket、TCP。“交流”让智人走上食物链的顶端。计算机网络的发展让交流变得更加便利,同时也促进交流技术的发展。如果有两个网友想送个礼物增进一下感情,那应该准备点啥呢? 靠想象,量子技术还在还在蹒跚学步呢;没办法,只能站在原始的现在,想想手里有点啥能实现...
2018-10-25 11:07:07 10802
转载 详解HTTP协议(二)
一图看完本文一、 计算机网络体系结构分层计算机网络体系结构分层计算机网络体系结构分层不难看出,TCP/IP 与 OSI 在分层模块上稍有区别。OSI 参考模型注重“通信协议必要的功能是什么”,而 TCP/IP 则更强调“在计算机上实现协议应该开发哪种程序”。二、 TCP/IP 基础1. TCP/IP 的具体含义从字面意义上讲,有人可能会认为 TCP...
2018-10-25 09:18:15 346
转载 详解Http协议(一)
一张图带你看完本篇文章一、概述1.计算机网络体系结构分层计算机网络体系结构分层2.TCP/IP 通信传输流利用 TCP/IP 协议族进行网络通信时,会通过分层顺序与对方进行通信。发送端从应用层往下走,接收端则从链路层往上走。如下:TCP/IP 通信传输流首先作为发送端的客户端在应用层(HTTP 协议)发出一个想看某个 Web 页面的 HTTP ...
2018-10-25 09:10:16 13652 2
转载 Python中的生成器是什么?yield关键字又有什么作用?
1.可迭代对象为了说明可迭代对象,首先我们要知道,迭代的概念。我们先来看一个实例:ls = [1,2,3,4,5]for i in ls: print(i)上面的实例非常简单,我们创建了一个列表ls,并且用for语句遍历这个列表的每一个元素。这里列表ls被遍历的这个行为,就称之为迭代。 明白了迭代的概念之后,你就会发现,在Python中,能够被迭代的不只有列表,例...
2018-10-23 22:38:54 2621
转载 范数通俗理解
作者:自由之畔链接:https://www.zhihu.com/question/21868680/answer/389440726来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 我也在找答案,目前我学到的是(这里先讲向量范数,不讲矩阵范数,但是大同小异,矩阵范数用得较多的也是从向量得到的诱导范数):所有人都说范数可以理解为在一个空间里两点的距离,或...
2018-10-22 10:54:37 7393 10
转载 范数理解(0范数,1范数,2范数)
刚刚结束,若有错误请多多指教。转载自http://www.zhihu.com/question/20473040/answer/102907063可以从函数、几何与矩阵的角度去理解范数。我们都知道,函数与几何图形往往是有对应关系的,这个很好想象,特别是在三维以下的空间内,函数是几何图像的数学概括,而几何图像是函数的高度形象化,比如一...
2018-10-22 10:25:53 34041 6
转载 机器学习之聚类(二)
漫谈:机器学习中距离和相似性度量方法  在机器学习和数据挖掘中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。最常见的是数据分析中的相关分析,数据挖掘中的分类和聚类算法,如 K 最近邻(KNN)和 K 均值(K-Means)等等。根据数据特性的不同,可以采用不同的度量方法。一般而言,定义一个距离函数 d(x,y), 需要满足下面几个准则:1...
2018-10-21 21:25:28 1500
原创 机器学习之聚类(一)
一、 机器学习概述1.1 监督学习与无监督学习监督学习:基于给定的数据数据与分类训练分类器以期达到比较好的分类效果。(Logistic回归、决策树、SVM)无监督学习:根据数据进行建模,对样本进行分类(通过对无标记训练样本的学习来揭示数据的内在性质以及规律,为进一步的数据分析提供基础)。1.2 聚类聚类属于无监督学习的一种。通过将数据集中的样本划分为若干个不想交的子集实现对...
2018-10-21 21:12:57 347
转载 python中列表、元组、字典、集合的异同
转载地址 http://blog.csdn.net/weixin_37720172/article/details/78769301一.前言一直想写写这四种类型的相同点,与不同点在哪里,以及在什么情况下应该使用哪种类型。无奈水平不够,怕写出来不够深刻,所以一直拖着。今天想了想还是写出来吧,如果以后还有新的见解或者技巧我会继续更上去的。二.列表(list...
2018-10-19 10:08:53 28363 7
原创 机器学习之集成学习
一、 概述1.1 定义:通过构架多个学习器完成学习任务。1.2 分类:1.2.1 学习器分类: 1.2.2 集成学习方法分类:1.3 集成学习模型:从模型可知,集成学习的主要问题为:①获得个体学习器 ②将个体学习器集合成强学习器(模型中的结合模块)1.4 结果产生原则:投票法(即学习器少数服从多数)二、Boosting算法2.1 原理图:Bo...
2018-10-18 19:48:11 445
转载 机器学习之参数估计
1.参数估计:矩估计样本统计量设X1,X2…Xn…X1,X2…Xn… k阶样本中心矩 (k=2时即方差)Mk=1n∑i=1n(Xi−X¯¯¯¯)kMk=1n∑i=1n(Xi−X¯)k1.1矩估计 那么随机变量的矩和样本的矩,有什么关系? 换个提法:...
2018-10-17 15:23:53 414
转载 参数估计-矩估计和极大似然估计概述
参数估计 参数估计:是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和区间估计两部分。 点估计:依据样本估计总体分布中所含的未知参数或未知参数的函数。 区间估计(置信区间的估计):依据抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,作为总体分布的未知参数或参数的函数的真值所在范围的估计。例如人...
2018-10-17 15:18:10 1720
转载 del assert pass用法
一、del的用法python中的del用法比较特殊,新手学习往往产生误解,弄清del的用法,可以帮助深入理解python的内存方面的问题。 python的del不同于C的free和C++的delete。 由于python都是引用,而python有GC机制,所以,del语句作用在变量上,而不是数据对象上。...
2018-10-17 09:21:30 184
原创 机器学习笔记之模型评估与选择
一、学习误差与过拟合1.1 经验误差:学习器在训练集上的实际预测输出与样本真实输出之间的误差。1.2 过拟合:训练过程中样本自身特点被当做潜在样本都具有的一般性质导致泛化能力下降的现象。1.3 欠拟合:与过拟合相反(寻找的样本自身特点不足,无法找出足够潜在样本的一般性质)。备注:P:算起来很快的问题 NP:算起来不一定快,但对于任何答案我们都可以快速的验证这个答案对不对 N...
2018-10-13 16:46:28 304
原创 机器学习(一)
一、机器学习定义机器学习:致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。(计算机科学是研究“算法”的学问;机器学习是研究“学习算法”的学问)二、分类监督学习:从给定的训练数据集中学习出一个函数,当新的数据到来时,可以根据这个函数预测结果。监督学习的训练集要求是包括输入和输出,也可以说是特征和目标。训练集中的目标是由人标注的。常见的监督学习算法包括回归分析和统计分类。监督...
2018-10-13 14:44:05 636
转载 贝叶斯决策之判别函数和决策面
一、判别函数:1.1 公式: gi(x)=f(p(wi|x))其中f():单调递增函数1.2 决策规则: if gi(x)>gj(x),∀ i≠j→x∈wi图示如下:1.3 常用判别函数: 二、决策面(Decision Surfaces)2.1 概念如果输入的数据是一个LL维空间特征,考虑一个MM分类问题,那么分类器将会...
2018-10-12 16:27:47 9298 1
原创 贝叶斯决策之最小平均风险
一 、最小平均风险来源:最小化分类错误率实质上是根据后验概率的最大值进行分类,即,然而不同事件分类错误导致的风险大小不同(例如:癌症误判时癌症判断为无癌导致的风险大于无癌判断为癌症),为取得最小的风险,提出最小平均风险。二、公式:其中表示把第j类错分为第类的惩罚因子。而由组成的矩阵称为风险矩阵且对角线元素都为0(对角元素无误判) ...
2018-10-12 11:04:01 2723 1
原创 联合概率分布笔记
1、什么是联合概率分布?联合概率分布简称联合分布,是两个及以上随机变量组成的随机向量的概率分布。根据随机变量的不同,联合概率分布的表示形式也不同。对于离散型随机变量,联合概率分布可以以列表的形式表示,也可以以函数的形式表示;对于连续型随机变量,联合概率分布通过一非负函数的积分表示。(即:多个事件同时发生的概率)2、联合概率分布的分类2.1 离散型联合概率分布变量:离散型随机向量 ...
2018-10-12 10:14:22 6632
转载 java web学习之Servert总结(一)
一、Servlet简介 Servlet是sun公司提供的一门用于开发动态web资源的技术。 Sun公司在其API中提供了一个servlet接口,用户若想用发一个动态web资源(即开发一个Java程序向浏览器输出数据),需要完成以下2个步骤: 1、编写一个Java类,实现servlet接口。 2、把开发好的Java类部署到web服务器中。 按照一种约定俗成的称呼习惯,通常我们也...
2018-07-13 08:24:58 3570
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人