矢量与场论 | 哈密顿算子
三种重要的矢量场(有势场、管形场、调和场)
有势场:设有矢量场A(M),若存在单值函数u(M),满足 A¯=gradu ,则称这个矢量场为有势场,令v=-u,则v为这个场的势函数。
1)有势场是一个梯度场;有势场的势函数有无穷个,它们之间只差一个常数
2)在线单连域内矢量场A为有势场的充要条件时A为无旋场
3)“场有势”“场无旋(rot A=0)”“场保守(场内曲线积分与路径无关)”彼此等价
2.管形场:设有矢量场A(M),若其散度div A=0,则称这个矢量场为管形场(即为无源场)。
1) 在面单连域内矢量场A为管形场的充要条件:A为另一个矢量场B的旋度场,即 A¯=rotB¯ ,满足条件的矢量场B,称为矢量场A的矢势量。
2) 设管形场A所在的空间区域为一面单连域,在场中任取一个矢量管。假定 S1 和 S2 时它的任意两个横断面,其法向量 n1 和 n2 都朝向矢量A所指的一侧,则有 ∫∫A¯S1⋅dS¯1=∫∫A¯S2⋅dS¯2
穿过同一个矢量管的所有横断面的通量都相等(常数,称之为矢量管的强度)
3. 调和场:如果在矢量场A中恒有 divA¯=0 和 rotA¯ ,称此矢量场为调和场
1)势函数u为调和函数,满足拉普拉斯方程 ∂2u∂x2+∂2u∂y2+∂2u∂z2=0
为方便表述,我们引入微分算子 Δ=∂2∂x2+∂2∂y2+∂2∂z2
2)平面调和场:定义u为平面调和场A的力函数,则u与v构成共轭调和函数
哈密顿算子
1.引入哈密顿算子 ▽≡∂∂xi¯+∂∂yj¯+∂∂zk¯
引入数性微分算子 A¯⋅▽=Ax∂∂x+Ay∂∂y+Az∂∂z
2. 运算规则
▽u=∂u∂xi¯+∂u∂yj¯+∂u∂zk¯
▽⋅A¯=∂Ax∂x+∂Ay∂y+∂Az∂z
▽×u=(∂Az∂y−∂Ay∂z)i¯+(∂Ax∂z−∂Az∂x)j¯+(∂Ay∂x−∂Ax∂y)k¯
即
gradu=▽u
divA¯=▽⋅A¯
rotA¯=▽×A¯
因为格式原因,有不完整的所以又附截图
3. 奥斯特罗格拉茨基公式 ∫∫A¯⋅ds¯=∫∫∫(▽⋅A¯)dV
4.格林公式
(格林公式推广至三维即为斯托克斯公式)
5. 斯托克斯公式 ∮lA¯⋅dl¯=∫∫(▽×A¯)⋅dS¯
4. 一些常见的公式(c为常数, c¯ 为常矢,u、v为数性函数, A¯ 、 B¯ 为矢性函数)
▽(cu)=c▽u
▽⋅(cA¯)=c▽⋅A¯
▽×(cA¯)=c▽×A¯
▽(u±v)=▽u±▽v
▽⋅(A¯±B¯)=▽⋅A¯±▽⋅B¯
▽×(A¯±B¯)=▽×A¯±▽×B¯
▽⋅(uc¯)=▽u⋅c¯
▽×(uc¯)=▽u×c¯
▽(uv)=u▽v+v▽u
▽⋅(uA¯)=u▽⋅A¯+▽u⋅A¯
▽×(uA¯)=u▽×A¯+▽u×A¯
▽⋅(▽u)=Δu
▽⋅(▽u)=Δu
▽⋅(▽×A¯)=0
▽×(▽×A¯)=▽(▽⋅A¯)−ΔA¯
5. 若 r¯=xi¯+yj¯+zk¯ ,则
▽r¯=r¯o (原方向上的单位矢量)
▽⋅r¯=3
▽×r¯=0¯
\2019.12.21 BUAA Dorm
https://zhuanlan.zhihu.com/p/98614295
以下 是哈密顿算子作用向量,点乘向量,叉乘向量的计算过程
下文转自《最美的公式:你也能懂的麦克斯韦方程组(微分篇)》解释上图点乘中最后结果XYZ中彼此两个单位向量相乘结果或变为1或者变为0的依据定理
这些内容我在上一篇都已经说了,这篇文章我们再来看看矢量点乘的几个性质。
性质1:点乘满足交换律,也就是说OA·OB=OB·OA。这个很明显,因为根据定义,前者的结果是|OA||OB| Cosθ,后者的结果是|OB||OA| Cosθ,它们明显是相等的。
性质2:点乘满足分配律,也就是说OA·(OB+OC)=OA·OB+OA·OC。这个稍微复杂一点,我这里就不作证明了,当做习题留给大家~
性质3:如果两个矢量相互垂直,那么它们点乘的结果为0。这个也好理解,如果两个矢量垂直,那么一个矢量在另一个矢量上的投影不就是一个点了么?一个点的大小肯定就是0啊,0乘以任何数都是0。如果大家学习了三角函数,从Cos90°=0一样一眼看出来。
性质4:如果两个矢量方向一样,那么它们点乘的结果就是他们大小相乘。理解了性质3,理解4就非常容易了,从cos0°=1也能一眼便知。
此外要注意的是,点乘是不满足结合律的,也就是说没有(OA·OB)·OC=OA·(OB·OC),为什么?因为两个矢量点乘之后的结果是一个标量,你再让一个标量去点乘另一个矢量压根就没有意义,点乘是两个矢量之间的运算。
我们小学就开始学的加法、乘法满足交换律、结合律、分配律,而矢量的点乘除了不能用结合律以外,其它的都满足。我这样写是为了告诉大家:点乘虽然是一种新定义的运算,但是它和我们平常接触的加法、乘法还是很类似的,大家不用对这种陌生的运算产生未知的恐惧。
07坐标系下的点乘
一个矢量有大小又有方向,我们通常是用一个箭头来表示的,箭头的方向就代表了矢量的方向,而箭头的长短就代表了矢量的大小。如果我们这时候建立一个坐标系,把这个箭头的一端移动到坐标原点,那么箭头的另一端就会固定在坐标系的某个点上,这样的话,我们就可以用一个坐标点来表示一个矢量了。
....
如上图,A点的坐标是(4,3),那么这个矢量OA就可以记为(4,3)。然后,我们把矢量OA沿着x轴y轴做一个分解:
于是,我们的矢量OA就可以表示成:OA=OB+OC(矢量的加法就是把两个矢量首尾相连,所以OB+BA=OA,而BA=OC,所以有上面的结论)。这时候,如果我们在x轴上定义一个单位向量x(1,0),那么OB的长度是x长度的四倍,而他们的方向又一样,所以矢量OB=4x。同样,在y轴上定义一个单位向量y(0,1),那么OC=3y。那么,我们的OA就可以重新写成:OA=OB+OC=4x+3y。这样的话,我任意一个矢量(x1,y1)都可以写成x1x+y1y。于是我就成功的把那个括号给丢了,把坐标表示的矢量变成了我们熟悉的加法运算。这里我们要特别区分:x1,y1是坐标,是数,是标量,而黑体的x,y代表的是单位矢量。那么矢量的点乘就可以写成这样:(x1,y1)·(x2,y2)=(x1x+y1y)·(x2x+y2y)。因为点乘是满足分配律(见性质2)的,所以我们可以把上面的结果直接完全展开成:x1x2xx+x1y2xy+y1x2yx+y1y2yy。然后下面是重点:因为矢量x和y是分别沿着x轴和y轴的,所以它们是相互垂直的,而根据性质3,两个矢量如果相互垂直,它们的点乘结果就是0。也就是说,xy=yx=0,那么我们展开式的中间两项x1y2xy+y1x2yx就直接等于0。而根据性质4,xx= yy =1(因为x和y都是长度为1的单位矢量,自己跟自己点乘方向肯定一样)。于是,我们就可以发现两个矢量点乘之后的结果只剩下第一项和第四项的系数部分了,也就是说:(x1,y1)·(x2,y2)=(x1x+y1y)·(x2x+y2y)= x1x2 +y1y2。
百度百科中向量叉乘的定理性质如下
i,j,k满足以下特点:
i=jxk;j=kxi;k=ixj;
kxj=–i;ixk=–j;jxi=–k;
ixi=jxj=kxk=0;(0是指0向量)
由此可知,i,j,k是三个相互垂直的向量。它们刚好可以构成一个坐标系
百度百科中向量点乘的定理性质如下