矢量与场论 | 哈密顿算子,哈密顿算子,散度点乘,旋度叉乘的计算过程以及以及定理。哈密顿是单位长度的三个方向微分。散度的结果没有IJK(I*I=1特性)是标量

矢量与场论 | 哈密顿算子

三种重要的矢量场(有势场、管形场、调和场)

有势场:设有矢量场A(M),若存在单值函数u(M),满足 A¯=gradu ,则称这个矢量场为有势场,令v=-u,则v为这个场的势函数。

1)有势场是一个梯度场;有势场的势函数有无穷个,它们之间只差一个常数

2)在线单连域内矢量场A为有势场的充要条件时A为无旋场

3)“场有势”“场无旋(rot A=0)”“场保守(场内曲线积分与路径无关)”彼此等价

2.管形场:设有矢量场A(M),若其散度div A=0,则称这个矢量场为管形场(即为无源场)。

1) 在面单连域内矢量场A为管形场的充要条件:A为另一个矢量场B的旋度场,即 A¯=rotB¯ ,满足条件的矢量场B,称为矢量场A的矢势量。

2) 设管形场A所在的空间区域为一面单连域,在场中任取一个矢量管。假定 S1 和 S2 时它的任意两个横断面,其法向量 n1 和 n2 都朝向矢量A所指的一侧,则有 ∫∫A¯S1⋅dS¯1=∫∫A¯S2⋅dS¯2

穿过同一个矢量管的所有横断面的通量都相等(常数,称之为矢量管的强度)

3. 调和场:如果在矢量场A中恒有 divA¯=0 和 rotA¯ ,称此矢量场为调和场

1)势函数u为调和函数,满足拉普拉斯方程 ∂2u∂x2+∂2u∂y2+∂2u∂z2=0

为方便表述,我们引入微分算子 Δ=∂2∂x2+∂2∂y2+∂2∂z2

2)平面调和场:定义u为平面调和场A的力函数,则u与v构成共轭调和函数


哈密顿算子

1.引入哈密顿算子 ▽≡∂∂xi¯+∂∂yj¯+∂∂zk¯

引入数性微分算子 A¯⋅▽=Ax∂∂x+Ay∂∂y+Az∂∂z

2. 运算规则

▽u=∂u∂xi¯+∂u∂yj¯+∂u∂zk¯

▽⋅A¯=∂Ax∂x+∂Ay∂y+∂Az∂z

▽×u=(∂Az∂y−∂Ay∂z)i¯+(∂Ax∂z−∂Az∂x)j¯+(∂Ay∂x−∂Ax∂y)k¯

gradu=▽u

divA¯=▽⋅A¯

rotA¯=▽×A¯

因为格式原因,有不完整的所以又附截图

3. 奥斯特罗格拉茨基公式 ∫∫A¯⋅ds¯=∫∫∫(▽⋅A¯)dV

4.格林公式

(格林公式推广至三维即为斯托克斯公式)

5. 斯托克斯公式 ∮lA¯⋅dl¯=∫∫(▽×A¯)⋅dS¯

4. 一些常见的公式(c为常数, c¯ 为常矢,u、v为数性函数, A¯ 、 B¯ 为矢性函数)

▽(cu)=c▽u

▽⋅(cA¯)=c▽⋅A¯

▽×(cA¯)=c▽×A¯

▽(u±v)=▽u±▽v

▽⋅(A¯±B¯)=▽⋅A¯±▽⋅B¯

▽×(A¯±B¯)=▽×A¯±▽×B¯

▽⋅(uc¯)=▽u⋅c¯

▽×(uc¯)=▽u×c¯

▽(uv)=u▽v+v▽u

▽⋅(uA¯)=u▽⋅A¯+▽u⋅A¯

▽×(uA¯)=u▽×A¯+▽u×A¯

▽⋅(▽u)=Δu

▽⋅(▽u)=Δu

▽⋅(▽×A¯)=0

▽×(▽×A¯)=▽(▽⋅A¯)−ΔA¯

5. 若 r¯=xi¯+yj¯+zk¯ ,则

▽r¯=r¯o (原方向上的单位矢量)

▽⋅r¯=3

▽×r¯=0¯

\2019.12.21 BUAA Dorm

https://zhuanlan.zhihu.com/p/98614295

以下 是哈密顿算子作用向量,点乘向量,叉乘向量的计算过程

下文转自《最美的公式:你也能懂的麦克斯韦方程组(微分篇)》解释上图点乘中最后结果XYZ中彼此两个单位向量相乘结果或变为1或者变为0的依据定理

这些内容我在上一篇都已经说了,这篇文章我们再来看看矢量点乘的几个性质。

性质1点乘满足交换律,也就是说OA·OB=OB·OA。这个很明显,因为根据定义,前者的结果是|OA||OB| Cosθ,后者的结果是|OB||OA| Cosθ,它们明显是相等的。

性质2:点乘满足分配律,也就是说OA·(OB+OC)=OA·OB+OA·OC。这个稍微复杂一点,我这里就不作证明了,当做习题留给大家~

性质3如果两个矢量相互垂直,那么它们点乘的结果为0。这个也好理解,如果两个矢量垂直,那么一个矢量在另一个矢量上的投影不就是一个点了么?一个点的大小肯定就是0啊,0乘以任何数都是0。如果大家学习了三角函数,从Cos90°=0一样一眼看出来。

性质4如果两个矢量方向一样,那么它们点乘的结果就是他们大小相乘。理解了性质3,理解4就非常容易了,从cos0°=1也能一眼便知。

此外要注意的是,点乘是不满足结合律的,也就是说没有OA·OB)·OC=OA·(OB·OC),为什么?因为两个矢量点乘之后的结果是一个标量,你再让一个标量去点乘另一个矢量压根就没有意义,点乘是两个矢量之间的运算。

我们小学就开始学的加法乘法满足交换律、结合律、分配律,而矢量的点乘除了不能用结合律以外,其它的都满足。我这样写是为了告诉大家:点乘虽然是一种新定义的运算,但是它和我们平常接触的加法、乘法还是很类似的,大家不用对这种陌生的运算产生未知的恐惧

07坐标系下的点乘

一个矢量有大小又有方向,我们通常是用一个箭头来表示的,箭头的方向就代表了矢量的方向,而箭头的长短就代表了矢量的大小。如果我们这时候建立一个坐标系,把这个箭头的一端移动到坐标原点,那么箭头的另一端就会固定在坐标系的某个点上,这样的话,我们就可以用一个坐标点来表示一个矢量了

....

如上图,A点的坐标是(4,3),那么这个矢量OA就可以记为(4,3)。然后,我们把矢量OA沿着x轴y轴做一个分解:

于是,我们的矢量OA就可以表示成:OA=OB+OC(矢量的加法就是把两个矢量首尾相连,所以OB+BA=OA,而BA=OC,所以有上面的结论)。这时候,如果我们在x轴上定义一个单位向量x(1,0),那么OB的长度是x长度的四倍,而他们的方向又一样,所以矢量OB=4x。同样,在y轴上定义一个单位向量y(0,1),那么OC=3y。那么,我们的OA就可以重新写成:OA=OB+OC=4x+3y。这样的话,我任意一个矢量(x1,y1)都可以写成x1x+y1y。于是我就成功的把那个括号给丢了,把坐标表示的矢量变成了我们熟悉的加法运算。这里我们要特别区分:x1,y1是坐标,是数,是标量,而黑体的x,y代表的是单位矢量。那么矢量的点乘就可以写成这样:(x1,y1)·(x2,y2)=(x1x+y1y)·(x2x+y2y)。因为点乘是满足分配律(见性质2)的,所以我们可以把上面的结果直接完全展开成:x1x2xx+x1y2xy+y1x2yx+y1y2yy。然后下面是重点:因为矢量xy是分别沿着x轴和y轴的,所以它们是相互垂直的,而根据性质3两个矢量如果相互垂直,它们的点乘结果就是0。也就是说,xy=yx=0,那么我们展开式的中间两项x1y2xy+y1x2yx就直接等于0。而根据性质4,xx= yy =1(因为x和y都是长度为1的单位矢量,自己跟自己点乘方向肯定一样)。于是,我们就可以发现两个矢量点乘之后的结果只剩下第一项和第四项的系数部分了,也就是说:(x1,y1)·(x2,y2)=(x1x+y1y)·(x2x+y2y)= x1x2 +y1y2。

百度百科中向量叉乘的定理性质如下

i,j,k满足以下特点:

i=jxk;j=kxi;k=ixj;

kxj=–i;ixk=–j;jxi=–k;

ixi=jxj=kxk=0;(0是指0向量)

由此可知,i,j,k是三个相互垂直的向量。它们刚好可以构成一个坐标系

百度百科中向量点乘的定理性质如下

### 回答1: 根据题目要求,我们需要回答关于数学物理方法中姚端正的第8章的内容。姚端正是中国科学家,数学物理方法是他的学术专长之一。在他的第8章中,可能涉及的主要内容如下: 1. 常微分方程(ODEs)和偏微分方程(PDEs):姚端正可能会讨论各种常微分方程和偏微分方程的解法、性质和应用。他可能会介绍一些经典的ODE和PDE问题,并探讨它们在物理学中的应用。 2. 变分法:变分法是一种数学方法,广泛应用于物理学中的优化问题、极值问题和泛函分析。姚端正可能会阐述变分法的基本原理和应用,以及它在数学物理方法中的重要性。 3. 分析力学:姚端正可能会讨论分析力学的基本理论和方法,包括拉格朗日力学和哈密顿力学。他可能会介绍如何将这些力学理论应用到物理系统的建模和分析中。 4. 符号计算和数值计算:姚端正可能会讨论利用计算机进行符号计算和数值计算在数学物理方法中的应用。他可能会介绍一些常用的计算工具和软件,并讨论它们在解决实际问题中的作用。 5. 数学物理中的其他方法:除了上述内容,姚端正的第8章还可能涉及其他一些数学物理方法,如函数分析、特殊函数、群论等。他可能会介绍这些方法的基本概念和应用,以及它们在解决复杂物理问题中的重要性。 综上所述,姚端正的第8章可能涵盖了常微分方程、偏微分方程、变分法、分析力学、符号计算、数值计算和其他一些数学物理方法。这些内容都是数学物理学中的基本和重要知识,对于理解和应用数学物理方法具有重要意义。 ### 回答2: 在姚端正教授的《数学物理方法》第八章中,我们学习了一些数学物理方法的应用。这一章主要包括了特殊函数和数学物理方程的求解。 特殊函数是数学物理中常见且重要的函数形式,如贝塞尔函数、勒让德多项式、埃尔米特多项式等。这些特殊函数在物理问题中的求解过程中起到了重要的作用。我们在本章中学习了这些特殊函数的定义、性质以及它们的求解方法。 此外,本章还介绍了一些数学物理方程的求解方法,如线性常微分方程、偏微分方程和积分方程。我们学习了这些方程的一般解法和特殊案例的解法。通过学习这些方法,我们能够更好地理解和分析各种物理现象。 在本章的学习过程中,我们做了大量的练习和习题。这些习题旨在帮助我们熟悉和掌握所学的数学物理方法,提高我们的解题能力和思维能力。在解题过程中,我们需要灵活运用所学的知识,理解问题的本质,并采用适当的方法和技巧去解决问题。 总之,姚端正教授的《数学物理方法》第八章内容丰富而全面,涵盖了特殊函数和数学物理方程的求解方法。通过学习这一章,我们能够深入理解和应用这些数学物理方法,提高我们的数学物理水平。 ### 回答3: 在物理学中,数学是一种不可或缺的工具,它帮助我们解决许多复杂的物理问题。姚端正的《数学物理方法》这本书,对于理解和应用数学在物理中的作用具有重要的意义。 该书第8章主要介绍了矢量分析和场论的数学方法。矢量分析是物理学中非常常用的数学工具。它通过矢量的运算,如矢量的加法、减法、等,来描述和分析物理量的方向和大小。这些技巧在解决力学、电磁学和流体力学等领域的问题时非常有用。 另外,《数学物理方法》中的第8章还涵盖了场论的数学方法。场是一种描述空间中某个物理量随着位置和时间的变化而变化的数学概念。在场论中,我们使用张量、梯旋度等数学工具对场进行分析和描述。这些方法对于解决电磁场、流体场和量子场等问题非常重要。 姚端正的《数学物理方法》因其综合性和实用性而受到广泛赞誉。这本书详细介绍了许多物理学中常用的数学方法,并提供了大量的例题和习题,帮助读者深入理解和掌握这些方法。无论是从事物理学研究的科学家,还是对数学物理方法感兴趣的读者,都能从中获益。 总之,《数学物理方法》是一本对于数学在物理学中应用的全面介绍。它不仅介绍了矢量分析和场论的数学方法,还提供了许多实例和习题供读者练习和巩固所学知识。通过学习该书,读者可以更深入地理解数学在物理学中的重要作用,并运用这些方法解决实际问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值