图像处理
文章平均质量分 94
HwzTable
图像算法工程师
展开
-
关于线性调频Z变换(chirp-z transform)加速运算与逆变换
线性调频Z变换CZT概念与傅里叶变换FT的区别关于CZT的加速运算(FFT代替卷积)一维CZT二维CZT概念线性调频变换,是一种广义的傅里叶变换,在1969年被提出,通常用于处理时序信号的频谱或时域信息,能细化感兴趣区间的信息。与傅里叶变换FT的区别首先从公式上进行分析,设xxx为时序信号,FT的公式关于CZT的加速运算(FFT代替卷积)一维CZT二维CZT...原创 2021-09-17 18:14:08 · 4555 阅读 · 0 评论 -
针对BraTS2018~2020的项目经验总结
自从4月份成功部署模型,实现自动分割算法落地应用后,便马不停蹄地致力于改进网络,提高分割精度,期间学习并复现了几种网络与实现了三维体数据的DataLoader和Cropping,记录一下以便不时之需;BraTS2018-No.1网络结构编码路径-卷积块解码路径--卷积块下采样Trick: VAE实现网络结构首先BraTS2018第一名方案的backbone与CNN类似,不同的是加入了decoder和VAE路径,前者结合Unet的skip concat作解码,还原到与原图像size相等的patch后,在原创 2020-07-28 23:11:16 · 5052 阅读 · 6 评论 -
踩坑:Libtorch实现U-net在C++上对BraTS2019数据集的分割任务部署
根据项目组要求,最近用Pytorch完成了U-net训练BraTS2019数据的任务,输出模型并在C++上重现部署,简单说说我遇到的坑,可按目录浏览:libtorch中大大小小的坑:- 模型转换问题- tensor是nan的值- 输出结果只有部分的一块- 模型转换问题步骤1:先在pytorch验证你的模型(.pth)是否能够重现结果,一般来讲都可以成功复原的,这一步很重要,在C++上重现时最...原创 2020-04-15 00:27:48 · 3302 阅读 · 19 评论 -
libtorch+VS2015配置与应用
背景:用Unet训练了脑肿瘤分割模型,导出了pytorch中的模型与参数.pth文件。目的:将.pth文件应用于C++中,形成分割功能,移植到实验室成员一同开发医学图像软件中。环境配置:pytorch 1.3 + libtorch 1.3 + VS 2015 + ITK 4.13 + cmake 3.12ITK 4.13与VS2015的配置方法可以在我另一篇文档或在社区中寻找配置方法,这里不...原创 2020-01-03 11:17:12 · 4619 阅读 · 6 评论 -
构建2D U-net来做BraTS2019
研二了,第一次用深度学习做分割,感觉自己落伍了好多,方向是图像处理,却一直在用传统法拼拼凑凑,同学都说深度学习要发文章得有好的数学基础,自知数学基础差的情况下还是要接触一下的,毕竟万事开头难,不学习就永远不会,那么闲话不多说,记录一下自己的学习过程。(环境=py3.7+pytorch+spyder)首先根据前人经验先搭建网络,下图是Unet的网络结构图:观察到conv操作蛮多的,不管是下采...原创 2019-11-26 21:25:38 · 4572 阅读 · 28 评论 -
Python与matlab关于二进制图片文件读取
本文给出一种自己用python处理深度学习医学图像的步骤与思路;首先本文用DenseNet+UNet的模型做脑组织分割,主要分割对象包括脑脊液、脑白质、脑灰质和背景,一共四类,训练完成进行测试,生成.bin二进制文件;然后要对这个二进制文件进行处理:import nibabel as nibimport matplotlib as ptlimport osimport numpy as...原创 2019-10-31 17:28:53 · 1203 阅读 · 0 评论