将数据按左负数,中间零,右正数排序

一般的排序有许多经典算法,如快速排序、希尔排序等。 但实际应用时,经常会或多或少有一些特殊的要求。我们没必要套用那些经典算法,可以根据实际情况建立更好的解法。
比如,对一个整型数组中的数字进行分类排序:使得负数都靠左端,正数都靠右端,0在中部。注意问题的特点是:负数区域和正数区域内并不要求有序。可以利用这个特点通过1次线性扫描就结束战斗。
以下的程序实现了该目标。

 #其中x指向待排序的整型数组,len是数组的长度。
 #当x[p] <0 时,和前一个交换,p++,left++
 #当x[p] >0 时,x[p]和x[right]交换,right--
 #当x[p] =0 时,p++
void sort3p(int* x, int len)
{
    int p = 0;
    int left = 0;
    int right = len-1;  
    while(p<=right)
    {
        if(x[p]<0)
        {
            int t = x[left];
            x[left] = x[p];
            x[p] = t;
            left++;
            p++;
        }
        else if(x[p]>0)
        {
            int t = x[right];
            x[right] = x[p];
            x[p] = t;
            right--;            
        }
        else
        {
            p++; 
        }
    }
}
为了对一个包含n个实数的数组进行重组,将所有负数放在所有正数前面,我们可以使用一种称为“双指针”的策略结合快速排序的思想。这里我们将选择0作为分隔点,因为它的值位于正数负数之间,可以作为一个自然的基准。 以下是使用Python编写的一个简单的快速排序算法,其中包含了一个辅助函数`partition()`用于交换数组元素以满足负数先于正数的要求: ```python def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[0] # 选择第一个元素作为基准 left, equal, right = [], [], [] for num in arr: if num < pivot: left.append(num) elif num == pivot: equal.append(num) else: right.append(num) # 侧存放负数中间存放0,侧存放正数 return quick_sort(left) + equal + quick_sort(right) # 示例 arr = [5, -3, 9, 0, -4, 8, 2, 0] sorted_arr = quick_sort(arr) print("Sorted array with negative numbers before positive ones:", sorted_arr) ``` **算法复杂度分析**: - 时间复杂度:快速排序的平均时间复杂度是O(n log n),最坏的情况是O(n^2)(当输入数组已经有序或接近有序时)。在这个特定的版本中,由于我们每次都是对负数正数进行递归排序,因此整体上仍然是O(n log n)的复杂度。 - 空间复杂度:由于递归调用栈的存在,空间复杂度为O(log n)。这是因为在最坏的情况下需要递归log n层。 **相关问题--:** 1. 这种算法是否保证了最优时间复杂度? 2. 如果输入数组已经是有序的,这种排序会如何影响性能? 3. 如何优化此算法,使其在处理大量数据时有更好的性能表现?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值