LlogL 空间

本文介绍了LlogL空间,这是一种Orlicz空间,其定义涉及可测函数f,使得存在正数λ,满足积分条件∫Xλ|f(x)|log(e+λ|f(x)|)dx<1。LlogL空间的范数定义也在此给出。
摘要由CSDN通过智能技术生成

这就是个特殊的 Orlicz space, 日后再补.

LlogL 空间的定义

L log ⁡ L ( X ) : = { f 是 可 测 函 数 : ∃ λ &gt; 0 , s . t . ∫ X ∣ f ( x ) ∣ λ log ⁡ ( e + ∣ f ( x ) ∣ λ ) d x &lt; 1 } . L\log L(X) := \left\{ f 是可测函数: \exists \lambda &gt; 0, s.t. \int_X \frac{|f(x)|}{\lambda} \log \left( e + \frac{|f(x)|}{\lambda} \right) dx &lt; 1 \right\}. LlogL(X):=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值