这就是个特殊的 Orlicz space, 日后再补.
LlogL 空间的定义
L log L ( X ) : = { f 是 可 测 函 数 : ∃ λ > 0 , s . t . ∫ X ∣ f ( x ) ∣ λ log ( e + ∣ f ( x ) ∣ λ ) d x < 1 } . L\log L(X) := \left\{ f 是可测函数: \exists \lambda > 0, s.t. \int_X \frac{|f(x)|}{\lambda} \log \left( e + \frac{|f(x)|}{\lambda} \right) dx < 1 \right\}. LlogL(X):={f是可测函数:∃λ>0,s.t.∫Xλ∣f(x)∣log(e+λ∣f(x)∣)dx<1}.
∥ f ∥ L log L ( X ) : = inf { λ > 0 : ∫ X ∣ f ( x ) ∣ λ log ( e + ∣ f ( x ) ∣ λ ) d x < 1 } . \Vert f \Vert_{L\log L(X)} := \inf \left\{ \lambda > 0: \int_X \frac{|f(x)|}{\lambda} \log \left( e + \frac{|f(x)|}{\lambda} \right) dx < 1 \right\}. ∥f∥LlogL(X):=inf{λ>0:∫Xλ∣f(x)∣log(e+λ∣f(x)∣)dx<1}.