证明集合 S : = { x ∈ Q : x 2 < 3 } S := \{ x \in \mathbb{Q} : \ x^2 < 3 \} S:={x∈Q: x2<3} 没有最大数.
方法一.
∀
p
∈
S
\forall \ p \in S
∀ p∈S, 不妨设
p
>
0
p > 0
p>0, 注意
(
p
+
1
n
)
2
=
p
2
+
2
p
n
+
1
n
2
.
\left( p + \frac{1}{n} \right)^2 = p^2 + \frac{2p}{n} + \frac{1}{n^2}.
(p+n1)2=p2+n2p+n21.
可以找到足够大的正整数
N
N
N 使得
2
p
N
+
1
N
2
<
3
−
p
2
.
\frac{2p}{N} + \frac{1}{N^2} < 3 - p^2.
N2p+N21<3−p2.
很多同学可能觉得写"可以找到足够大的正整数
N
N
N "就足够了, 但是我不推荐你们现在这么写, 初学者最好把
N
N
N 找出来.
令
q
:
=
p
+
1
/
N
q := p + 1/N
q:=p+1/N, 则
p
<
q
p < q
p<q,
q
∈
Q
q \in \mathbb{Q}
q∈Q 且
q
2
=
p
2
+
2
p
N
+
1
N
2
<
p
2
+
(
3
−
p
2
)
=
3.
q^2 = p^2 + \frac{2p}{N} + \frac{1}{N^2} < p^2 + (3 - p^2) = 3.
q2=p2+N2p+N21<p2+(3−p2)=3.
故
q
∈
S
q \in S
q∈S. 因此,
S
S
S 中没有最大数.
注: 这个方法有同学想到了, 构造其实也很自然, 我觉得很不错.
方法二.
∀
p
∈
S
\forall \ p \in S
∀ p∈S, 不妨设
p
>
0
p > 0
p>0, 令
q
:
=
p
+
3
−
p
2
p
+
2
=
2
p
+
3
p
+
2
.
q := p + \frac{3-p^2}{p+2} = \frac{2p+3}{p+2}.
q:=p+p+23−p2=p+22p+3.
则
p
<
q
p < q
p<q,
q
∈
Q
q \in \mathbb{Q}
q∈Q 且
q
2
−
3
=
p
2
−
3
(
p
+
2
)
2
<
0.
q^2 - 3 = \frac{p^2 - 3}{(p+2)^2} < 0.
q2−3=(p+2)2p2−3<0.
故
q
∈
S
q \in S
q∈S. 因此,
S
S
S 中没有最大数.
注: 这个方法是 Rudin 给出的精妙构造, 我觉得有参考价值.
类似可证
S
:
=
{
x
∈
Q
:
x
2
>
3
}
S := \{ x \in \mathbb{Q} : \ x^2 > 3 \}
S:={x∈Q: x2>3} 没有最小数.
有了上面的性质, 不难证明
S
S
S在
Q
\mathbb{Q}
Q中无上确界, 由完备性的定义知理数不完备.
此处完备性是序完备: 若数域 F F F 满足, 对 ∀ S ⊂ F \forall \, S \subset F ∀S⊂F, 若 S S S 有上界, 则 S S S 有上确界, 若 S S S 有下界, 则 S S S 有下确界, 则称 F F F是完备的.
但是 Q \mathbb{Q} Q是有度量的, 我稍微想了想, 序完备和度量完备应该是等价的, 不过证明有点麻烦.