led指示灯识别功能

led指示灯识别可以实现led的八种灯光颜色识别以及灯光闪烁识别。可用于大型设备的led灯光自动化监控。暂未实现led定位识别。

本代码使用python编写,依赖opencv来进行颜色识别。 依赖open cv 3.4.1,太高可能会报错

pip3 install opencv_python==3.4.2.16

# -*- coding: utf-8 -*-
"""
图片测试
"""
import cv2
import numpy as np
import collections
import OperationMysql as mySql


# 处理图片
def get_color(frame):
    print('go in get_color')
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    maxsum = -100
    color = None
    color_dict = getColorList()
    for d in color_dict:
        mask = cv2.inRange(hsv, color_dict[d][0], color_dict[d][1])
        cv2.imwrite(d + '.jpg', mask)
        binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
        binary = cv2.dilate(binary, None, iterations=2)
        img, cnts, hiera = cv2.findContours(binary.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        sum = 0
        for c in cnts:
            sum += cv2.contourArea(c)
        if sum > maxsum:
            maxsum = sum
            color = d

    return color


def getColorList():
    dict = collections.defaultdict(list)
    # 黑色
    lower_black = np.array([0, 0, 0])
    upper_black = np.array([180, 255, 46])
    color_list = []
    color_list.append(lower_black)
    color_list.append(upper_black)
    dict['black'] = color_list
    # 灰色
    lower_gray = np.array([0, 0, 46])
    upper_gray = np.array([180, 43, 220])
    color_list = []
    color_list.append(lower_gray)
    color_list.append(upper_gray)
    dict['gray'] = color_list
    # 白色
    lower_white = np.array([0, 0, 221])
    upper_white = np.array([180, 30, 255])
    color_list = []
    color_list.append(lower_white)
    color_list.append(upper_white)
    dict['white'] = color_list
    # 红色
    lower_red = np.array([156, 43, 46])
    upper_red = np.array([180, 255, 255])
    color_list = []
    color_list.append(lower_red)
    color_list.append(upper_red)
    dict['red'] = color_list
    # 红色2
    lower_red = np.array([0, 43, 46])
    upper_red = np.array([10, 255, 255])
    color_list = []
    color_list.append(lower_red)
    color_list.append(upper_red)
    dict['red2'] = color_list
    # 橙色
    lower_orange = np.array([11, 43, 46])
    upper_orange = np.array([25, 255, 255])
    color_list = []
    color_list.append(lower_orange)
    color_list.append(upper_orange)
    dict['orange'] = color_list
    # 黄色
    lower_yellow = np.array([26, 43, 46])
    upper_yellow = np.array([34, 255, 255])
    color_list = []
    color_list.append(lower_yellow)
    color_list.append(upper_yellow)
    dict['yellow'] = color_list

    # 绿色
    lower_green = np.array([35, 43, 46])
    upper_green = np.array([77, 255, 255])
    color_list = []
    color_list.append(lower_green)
    color_list.append(upper_green)
    dict['green'] = color_list

    # 青色
    lower_cyan = np.array([78, 43, 46])
    upper_cyan = np.array([99, 255, 255])
    color_list = []
    color_list.append(lower_cyan)
    color_list.append(upper_cyan)
    dict['cyan'] = color_list

    # 蓝色
    lower_blue = np.array([100, 43, 46])
    upper_blue = np.array([124, 255, 255])
    color_list = []
    color_list.append(lower_blue)
    color_list.append(upper_blue)
    dict['blue'] = color_list

    # 紫色
    lower_purple = np.array([125, 43, 46])
    upper_purple = np.array([155, 255, 255])
    color_list = []
    color_list.append(lower_purple)
    color_list.append(upper_purple)
    dict['purple'] = color_list

    return dict

# 待识别图片
img = cv2.imread('images/test.jpg')

# 区域,可改为for循环,同时识别多个区域
x2, y2, w2, h2 = (426, 909, 37, 37)
# print(x2, y2, w2, h2)
img_roi2 = img[int(y2):int(y2 + h2), int(x2):int(x2 + w2)]
cv2.rectangle(img=img, pt1=(x2, y2), pt2=(x2 + w2, y2 + h2), color=(0, 0, 255), thickness=1)
color = get_color(img_roi2)
cv2.putText(img, '{0}'.format(color),
               (x2 + 50, y2),
               cv2.FONT_HERSHEY_SIMPLEX,
               1.2, (0, 0, 255), 4,
               cv2.LINE_AA)

cv2.imshow('roi', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

效果图:

后期有需要可扩展led自动区域识别与区域文字识别,现在暂时手动定位roi区域。

定位工具参看下一篇博客roi定位工具

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值