python中轮廓检测算法

#装载地址:http://www.jb51.net/article/122475.htm
#coding=utf-8 
import cv2 
import numpy as np
 
img = cv2.imread("temp.jpg")    #载入图像
h, w = img.shape[:2]      #获取图像的高和宽 
cv2.imshow("Origin", img)     #显示原始图像
 
blured = cv2.blur(img,(5,5))    #进行滤波去掉噪声
cv2.imshow("Blur", blured)     #显示低通滤波后的图像
 
mask = np.zeros((h+2, w+2), np.uint8)  #掩码长和宽都比输入图像多两个像素点,满水填充不会超出掩码的非零边缘 
#进行泛洪填充
cv2.floodFill(blured, mask, (w-1,h-1), (255,255,255), (2,2,2),(3,3,3),8)
cv2.imshow("floodfill", blured) 
 
#得到灰度图
gray = cv2.cvtColor(blured,cv2.COLOR_BGR2GRAY) 
cv2.imshow("gray", gray) 
 
 
#定义结构元素 
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(50, 50))
#开闭运算,先开运算去除背景噪声,再继续闭运算填充目标内的孔洞
opened = cv2.morphologyEx(gray, cv2.MORPH_OPEN, kernel) 
closed = cv2.morphologyEx(opened, cv2.MORPH_CLOSE, kernel) 
cv2.imshow("closed", closed) 
 
#求二值图
ret, binary = cv2.threshold(closed,250,255,cv2.THRESH_BINARY) 
cv2.imshow("binary", binary) 
 
#找到轮廓
_,contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) 
#绘制轮廓
 
cv2.drawContours(img,contours,-1,(0,0,255),3) 
#绘制结果
cv2.imshow("result", img)
 
cv2.waitKey(0) 
cv2.destroyAllWindows()

Python,圆轮廓检测通常用于图像处理和计算机视觉领域,特别是当需要识别、分割或跟踪圆形物体时。这通常涉及到以下几个步骤: 1. **导入库**:首先,你需要导入`cv2`(OpenCV)库,它包含了大量的图像处理函数。 ```python import cv2 ``` 2. **读取图像**:加载你要分析的图片,然后转换为灰度图像以便更容易检测边缘。 ```python img = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE) ``` 3. **边缘检测**:可以使用`Canny`算法或`findContours`函数寻找图像的边缘。 ```python edges = cv2.Canny(img, low_threshold, high_threshold) # 使用Canny算子 contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) ``` 4. **过滤轮廓**:检查找到的轮廓是否接近圆形。可以通过计算每个轮廓的面积和边界框的周长来进行初步判断。例如,通过`approxPolyDP`和`arcLength`等函数来近似并测量轮廓。 ```python circles = [] for contour in contours: approx = cv2.approxPolyDP(contour, 0.05 * cv2.arcLength(contour, True), True) if len(approx) == 3: # 三角形可能是噪声,我们通常寻找的是近似的圆 continue if len(approx) == 4 and cv2.isContourConvex(contour): # 四边形可能是正方形或矩形 continue area = cv2.contourArea(contour) perimeter = cv2.arcLength(contour, True) if cv2.matchShapes(cnt, circle, 1, 0.0) < 0.1: # 比较相似度阈值,如小于0.1则认为是圆 circles.append((approx, area, perimeter)) ``` 5. **显示结果**:最后,你可以画出检测到的圆形轮廓。 ```python for c in circles: ... # 绘制轮廓和可能的心点 cv2.imshow("Circle Detection", img) cv2.waitKey(0) cv2.destroyAllWindows() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值