算法课作业系列12——Maximal Rectangle

算法课作业系列12

Maximal Rectangle

题目

Given a 2D binary matrix filled with 0’s and 1’s, find the largest rectangle containing only 1’s and return its area.

For example, given the following matrix:

1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0

Return 6.

思路

这道题我想了很久,但是都一一推翻,一个小时之后,我去了讨论区……
言归正传,这道题的思路我是真的想不到的,我根据题目的特征,也就是长方体,想找对角线来决定,然而都失败了,这里只是列举出我学习到的算法,并不是我自己想到的。
1. 找到左边界和右边界
2. 找到高
我来解释一下,意思就是对于每个位置,找到每一行的左边界和右边界,从而决定有多宽,具体数值根据当前行和上一行的清苦昂决定;那决定高就很好理解了,看看纵向能延展多少,从而根据底和高确定出最后面积

参考代码

class Solution {
public:
    int maximalRectangle(vector<vector<char>>& matrix) {
        vector<vector<int> > left(matrix.size());
        vector<vector<int> > right(matrix.size());
        vector<vector<int> > height(matrix.size());
        int max = 0;
        for (int i = 0; i < matrix.size(); i++) {
            vector<int> tmp(matrix[0].size());
            left[i] = tmp;
            right[i] = tmp;
            height[i] = tmp;
            for (int j = 0; j < matrix[0].size(); j++) {
                if (matrix[i][j] == '0') {
                    left[i][j] = 0;
                    right[i][j] = matrix[0].size();
                    height[i][j] = 0;
                } else {
                    int k, l;
                    for (k = j - 1; k >= 0; k--) {
                        if (matrix[i][k] == '0') {
                            break;
                        }
                    }
                    k += 1;
                    for (l = j + 1; l < matrix[0].size(); l++) {
                        if (matrix[i][l] == '0') {
                            break;
                        }
                    }
                    if (i == 0) {
                        left[i][j] = k;
                        right[i][j] = l;
                        height[i][j] = 1;
                    } else {
                        left[i][j] = k > left[i - 1][j]?k:left[i - 1][j];
                        right[i][j] = l < right[i - 1][j]?l:right[i - 1][j];
                        height[i][j] = height[i - 1][j] + 1;
                    }
                }
                int ret = (right[i][j] - left[i][j]) * height[i][j];
                if (ret > max) {
                    max = ret;
                }
            }
        }
        return max;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值