题目描述
最初在一个记事本上只有一个字符 ‘A’。你每次可以对这个记事本进行两种操作:
Copy All (复制全部) : 你可以复制这个记事本中的所有字符(部分的复制是不允许的)。
Paste (粘贴) : 你可以粘贴你上一次复制的字符。
给定一个数字 n 。你需要使用最少的操作次数,在记事本中打印出恰好 n 个 ‘A’。输出能够打印出 n 个 ‘A’ 的最少操作次数。
示例:
输入: 3
输出: 3
解释: 最初, 我们只有一个字符 ‘A’。
第 1 步, 我们使用 Copy All 操作。
第 2 步, 我们使用Paste 操作来获得 ‘AA’。
第 3 步, 我们使用 Paste 操作来获得 ‘AAA’。
说明:
n 的取值范围是 [1, 1000]
算法思想: 如果n能够整除2,那么n/2只需要复制粘贴就能得到n(一共需要2步),如果不能整除2就试试3,如果能的话,那么n/3需要复制(粘贴)3就能得到n(一共需要3步),以此类推一直算到n/2还没有能够整除的数时,那么n只能复制粘贴n次得到(一共需要n步)。
以100为例,100/2=50,所以由50得到100需要复制粘贴2步,将50作为参数递归,50/2=25,由25得到50需要复制粘贴2步,将25作为参数递归,25/5=5,由5得到25需要复制(粘贴4)5步,将5作为参数递归,5只能由1复制(粘贴*4)5步得到。所以100最少操作次数为2+2+5+5=14
代码实现:
int minSteps(int n){
if(n<2) //如果n=1,无需操作所以返回0
return 0;
for(int i=2;i<n/2;i++)
if(n%i == 0)
return minSteps(n/i)+i; //i为n/i得到n所需要的操作次数
return n;
}
算法性能分析:
原文链接:https://www.jhxblog.cn/article/?articleid=22