00023 高等数学(工本)2024 年4月真题解析

说明

00023 高等数学(工本)2024 年4月真题解析

一、单选

  1. 设向量 a = { − 1 , 0 , 1 } a=\{-1,0,1\} a={ 1,0,1} b = { 1 , − 1 , 1 } b=\{1,-1,1\} b={ 1,1,1},则 2 a + b = 2a+b= 2a+b=( D )
    解: 2 a + b = { − 2 , 0 , 2 } + { 1 , − 1 , 1 } = { − 1 , − 1 , 3 } 2a+b=\{-2,0,2\}+\{1,-1,1\}=\{-1,-1,3\} 2a+b={ 2,0,2}+{ 1,1,1}={ 1,1,3}
  2. .设函数 z = x 2 + y 2 z=x^2+y^2 z=x2+y2,则全微分 d z ∣ ( 1 , 1 ) dz\big |_{(1,1)} dz (1,1)= ( C )
    解:
    d z = ∂ z ∂ x + ∂ z ∂ x = 2 x d x + 2 y d y d z ∣ ( 1 , 1 ) = 2 d x + 2 d y \begin{aligned} dz &=\dfrac{\partial z}{\partial x} + \dfrac{\partial z}{\partial x}\\ &=2xdx+2ydy \end{aligned}\\ dz\big|_{(1,1)} = 2dx+2dy dz=xz+xz=2xdx+2ydydz (1,1)=2dx+2dy
  3. 下列微分方程中,可分离变量的微分方程是( A )
    A . d y d x = − y x B . d y d x = e x y C . d y d x = x 2 + y 2 d y d x = x 2 + y 2 A. \dfrac{dy}{dx}= -\dfrac{y}{x} \quad B.\dfrac{dy}{dx}= e^{xy} \quad C.\dfrac{dy}{dx}= x^2+y^2\quad \dfrac{dy}{dx}= x^2+y^2 A.dxdy=xyB.dxdy=exyC.dxdy=x2+y2dxdy=x2+y2
    解:A 直接符合可分离变量的微分方程定义常微分方程
  4. 设级数 ∑ n = 0 ∞ 2 x n \sum\limits_{n=0}^{\infty} 2x^n n=02xn收敛, 则x的取值可为下列数值中的( B )
    A . 1 B . 1 2 C . 3 2 D . 2 A.1\quad B.\dfrac{1}{2}\quad C.\dfrac{3}{2}\quad D.2 A.1B.21C.23D.2
  5. 设积分区域D: x 2 + y 2 = R 2 x^2+y^2=R^2 x2+y2=R2,则二重积分 ∬ D ( x 2 + y 2 ) d x d y \iint\limits_D(x^2+y^2)dxdy D(x2+y2)dxdy=( C )
    A . 1 2 π R 2 B . 3 2 π R 3 C . 1 2 π R 4 D . π R 4 A.\dfrac{1}{2}\pi R^2 \quad B.\dfrac{3}{2}\pi R^3 \quad C.\dfrac{1}{2}\pi R^4 \quad D.\pi R^4 A.21πR2B.23πR3C.21πR4D.πR4
    解:
    ∬ D ( x 2 + y 2 ) d x d y = ∫ 0 2 π ∫ 0 R R 2 R d R d θ = ∫ 0 2 π 1 4 R 4 d θ = 1 2 π R 4 \iint\limits_D(x^2+y^2)dxdy=\int_0^{2\pi}\int_0^R R^2Rd_Rd_\theta=\int_0^{2\pi}\dfrac{1}{4}R^4d\theta=\dfrac{1}{2}\pi R^4 D(x2+y2)dxdy=02π0RR2RdRdθ=02π41R4dθ=21πR4
  6. 过点 ( 1 , 2 , − 1 ) (1,2,-1) (1,21) x − 2 − 1 = y + 4 3 = z + 1 1 \dfrac{x-2}{-1}=\dfrac{y+4}{3}=\dfrac{z+1}{1} 1x2=3y+4=1z+1直线平行的直线是( A )
    解:
    直线的方向向量 { − 1 , 3 , 1 } , 用点向式得直线方程: x − 1 − 1 = y − 2 3 = z + 1 1 直线的方向向量\{-1,3,1\}, 用点向式得直线方程:\\ \dfrac{x-1}{-1}=\dfrac{y-2}{3}=\dfrac{z+1}{1} 直线的方向向量{ 1,3,1},用点向式得直线方程:1x1=3y2=1z+1
  7. 极限 lim ⁡ x → 1 y → 0 1 y s i n ( x y ) \lim\limits_{x\rightarrow 1\atop y\rightarrow 0} \dfrac{1}{y}sin(xy) y0x1limy1sin(xy) = ( B )
    解:
    lim ⁡ x → 1 y → 0 1 y s i n ( x y ) = lim ⁡ x → 1 y → 0 x s i n ( x y )
  • 27
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值