凸优化之强弱对偶性与Slater准则

弱对偶性

Lagrange \text{Lagrange} Lagrange 对偶问题的最优值, 我们用 d ⋆ d^{\star} d 表示, 根据定义, 这是通过 Lagrange \text{Lagrange} Lagrange 函数 得到的原问题最优值 p ⋆ p^{\star} p 的最好下界(即最大下界). 特别地, 我们有下面简单但是非常重要的不等式 d ⋆ ⩽ p ⋆ ( primal dual ) d^{\star} \leqslant p^{\star} (\text{primal dual}) dp(primal dual),
即使原问题不是凸问题, 上述不等式亦成立. 这个性质称为弱对偶性.
即使当 d ⋆ d^{\star} d p ⋆ p^{\star} p 无限时, 弱对偶性不等式也成立. 例如, 如果原问题无下界, 即 p ⋆ = − ∞ p^{\star}=-\infty p=, 为了保证弱对偶性成立, 必须有 d ⋆ = − ∞ d^{\star}=-\infty d=, 即 Lagrange \text{Lagrange} Lagrange 对偶问题不可行. 反过来, 若对偶问题无上界, 即 d ⋆ = ∞ d^{\star}=\infty d=, 为了保证弱对偶性成立, 必须有 p ⋆ = ∞ p^{\star}=\infty p=,即原问题不可行.
定义差值 p ⋆ − d ⋆ p^{\star}-d^{\star} pd 是原问题的最优对偶间隙. 它给出了原问题最优值以及通过 Lagrange \text{Lagrange} Lagrange 对偶函数所能得到的最好(最大)下界之间的差值. 最优对偶间隙总是非负的.
当原问题很难求解时, 弱对偶不等式可以给出原问题最优值的一个下界, 这是因为对偶问题总是凸问题, 而且在很多情况下都可以进行有效的求解得到 d ⋆ d^{\star} d.
如果等式 d ⋆ = p ∗ d^{\star}=p^{*} d=p 成立, 即最优对偶间隙为零, 那么强对偶性成立. 这说明从 Lagrange \text{Lagrange} Lagrange 对偶函数得到的最好下界是紧的.

x ∈ r e l i n t    D x \in \boldsymbol{relint} \; \mathcal{D} xrelintD

强对偶性和 Slater \text{Slater} Slater 约束准则

如果等式
d ⋆ = p ∗ d^{\star}=p^{*} d=p
成立, 即最优对偶间隙为零, 那么强对偶性成立. 这说明从 Lagrange \text{Lagrange} Lagrange 对偶函数得到的
对于一般情况, 强对偶性不成立. 但是, 如果原问题是凸问题, 即可以表述为如下形式

minimize f 0 ( x ) subject to f i ( x ) ⩽ 0 , i = 1 , ⋯   , m , A x = b , \begin{array}{ll} \text{minimize} & f_{0}(x) \\ \text{subject to} & f_{i}(x) \leqslant 0, \quad i=1, \cdots, m, \\ &A x=b,& \end{array} minimizesubject tof0(x)fi(x)0,i=1,,m,Ax=b,

其中, 函数 f 0 , ⋯   , f m f_{0}, \cdots, f_{m} f0,,fm 是凸函数, 强对偶性通常(但不总是)成立. 有很多研究成果给出了强对偶性成立的条件 (除了凸性条件以外). 这些条件称为约束准则. 一个简单的约束准则是 Slater \text{Slater} Slater 条件: 存在一点 x ∈ r e l i n t    D x \in \boldsymbol{relint} \; \mathcal{D} xrelintD 使得下式成立

f i ( x ) < 0 , i = 1 , ⋯   , m , A x = b \begin{aligned} f_{i}(x)&<0, \quad i=1, \cdots, m, \\ A x&=b \end{aligned} fi(x)Ax<0,i=1,,m,=b

即在可行域 D \mathcal{D} D的内部不等式严格成立,仿射等式成立.
满足上述条件的点有时称为严格可行, 这是因为不等式约束严格成立. Slater \text{Slater} Slater 定理说明, 当 Slater \text{Slater} Slater 条件成立 (且原问题是凸问题)时, 强对偶性成立.

当不等式约束函数 f i f_{i} fi 中有一些是仿射函数时, Slater \text{Slater} Slater 条件可以进一步改进. 如果最前面的 k k k 个约束函数 f 1 , ⋯   , f k f_{1}, \cdots, f_{k} f1,,fk 是仿射的, 则若下列弱化的条件成立, 强对偶性成立. 该条件为: 存在一点 x ∈ r e l i n t    D x \in \boldsymbol{relint} \; \mathcal{D} xrelintD 使得

f i ( x ) ⩽ 0 , i = 1 , ⋯   , k , f i ( x ) < 0 , i = k + 1 , ⋯   , m , A x = b \begin{aligned}{} f_{i}(x) &\leqslant 0, \quad i=1, \cdots, k, \\ f_{i}(x)&<0, \quad i=k+1, \cdots, m, \\ A x&=b \end{aligned} fi(x)fi(x)Ax0,i=1,,k,<0,i=k+1,,m,=b

换言之, 在可行域 D \mathcal{D} D的内部, 仿射不等式不需要严格成立. 注意到当所有约束条件都是线性等式或不等式且 dom f 0 \text{dom} f_{0} domf0 是开集时, 改进的 Slater \text{Slater} Slater 条件就是可行性条件.

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wowotou1998

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值