Competitive Physics Informed Networks

文章提出了一种新的解决偏微分方程(PDE)的方法,称为竞争物理信息网络(CPINN)。CPINN通过将PDE的最小二乘问题转换为鞍点问题,解决了PINN在处理病态矩阵时的收敛问题。通过引入博弈理论,网络在纳什均衡点处找到PDE的解。实验在多个方程上展示了CPINN相对于PINN+Adam的改进,尽管(A)CGD的迭代成本更高。文章强调了病态系统的挑战并提出了用博弈理论优化的策略。
摘要由CSDN通过智能技术生成

Competitive Physics Informed Networks

问题分析

一个PDE问题可以表示为如下形式:
A [ u ] = f ,   i n   Ω u = g ,   o n   ∂ Ω , \begin{aligned} \mathcal{A}[u]&=f,\mathrm{~in~}\Omega\\ u&=g,\mathrm{~on~}\partial\Omega, \end{aligned} A[u]u=f, in Ω=g, on Ω,
在有限元方法中,通常会考虑基函数集 { ψ i } 1 ≤ i ≤ dim ⁡ ( π ) \left\{\psi_i\right\}_{1\leq i\leq\dim(\boldsymbol{\pi})} {ψi}1idim(π) ,通过定义 A ∈ R N Ω × dim ⁡ ( π ) A\in\mathbb{R}^{N_{\Omega}\times\dim(\boldsymbol{\pi})} ARNΩ×dim(π) 以及 f ∈ R N Ω f\in\mathbb{R}^{N_{\Omega}} fRNΩ 可以将上述PDE问题进行如下离散:
A i j : = A [ ψ j ] ( x i ) , f i : = f ( x i ) A_{ij}:=\mathcal{A}[\psi_j](x_i),\quad f_i:=f(x_i) Aij:=A[ψj](xi),fi:=f(xi)
得到离散PDE如下:
A π = f . \boldsymbol{A}\boldsymbol{\pi}= \boldsymbol{f}. Aπ=f.
考虑一个同样由这组基函数构成的神经网络,表示如下:
P ( x ) = ∑ i = 1 d i m ( π ) π i ψ i ( x ) \mathcal{P}(x)=\sum_{i=1}^{\mathrm{dim}(\boldsymbol{\pi})}\pi_i\psi_i(x) P(x)=i=1dim(π)πiψi(x)
PINN就是通过将上述等式转换为最小二乘问题,来对PDE的解进行近似:
min ⁡ π ∥ A π − f ∥ 2 , \min_{\boldsymbol{\pi}}\|\boldsymbol{A\pi-f}\|^2, πminf2,
其解为 π = ( A ⊤ A ) − 1 A ⊤ f \boldsymbol{\pi=(A^\top A)^{-1}A^\top f} π=(AA)1Af。 由于矩阵 ( A ⊤ A ) (\boldsymbol{A}^\top\boldsymbol{A}) (AA) 为对称正定矩阵,因此可以使用共轭梯度法等专用的算法来解决;但当矩阵 A \boldsymbol{A} A 为病态矩阵时, κ ( A ⊤ A ) = κ ( A ) 2 \kappa(\boldsymbol{A}^\top\boldsymbol{A})=\kappa(\boldsymbol{A})^2 κ(AA)=κ(A)2 会导致迭代求解收敛缓慢。由于微分算子是无界的,因此它们的离散化更容易导致病态的线性系统。

解决方法

作者想将上述离散PDE转化为如下鞍点问题:
min ⁡ π max ⁡ δ δ ⊤ ( A π − f ) \min_{\boldsymbol{\boldsymbol{\pi}}}\max_{\boldsymbol{\delta}}\boldsymbol{\delta}^\top(\boldsymbol{A}\pi-\boldsymbol{f}) πminδmaxδ(Aπf)
这个方程的解和原方程的解是一致的
[ 0 A ⊤ A 0 ] [ π δ ] = [ 0 f ] ,   w i t h   κ ( [ 0 A ⊤ A 0 ] ) = κ ( A ) . \begin{bmatrix} \boldsymbol{0}&\boldsymbol{A}^\top\\ \boldsymbol{A}&\boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{\pi}\\ \boldsymbol{\delta} \end{bmatrix} =\begin{bmatrix} \boldsymbol{0}\\ \boldsymbol{f} \end{bmatrix}, \quad\mathrm{~with~}\quad\kappa\left( \begin{bmatrix} \boldsymbol{0}&\boldsymbol{A}^\top\\ \boldsymbol{A}&\boldsymbol{0} \end{bmatrix} \right)=\kappa(\boldsymbol{A}). [0AA0][πδ]=[0f], with κ([0AA0])=κ(A).
具体而言,作者引入了一个判别器 D \mathcal{D} D ,其输入为 x ∈ R d x \in \mathbb{R}^d xRd ,输出为 D Ω ( x ) \mathcal{D}_\Omega(x) DΩ(x) 以及 D ∂ Ω ( x ) \mathcal{D}_{\partial\Omega}(x) DΩ(x) P \mathcal{P} P D \mathcal{D} D 进行零和博弈,其中 P \mathcal{P} P 学习求解偏微分方程, D \mathcal{D} D 学习预测 P \mathcal{P} P 的误差。该博弈可以被定义为如下极小极大问题:
max ⁡ D min ⁡ P L Ω C P I N N ( P , D , x ) + L ∂ Ω C P I N N ( P , D , x ‾ ) \max_{\mathcal{D}}\min_{\mathcal{P}}\mathcal{L}_{\Omega}^{\mathbf{CPINN}}(\mathcal{P},\mathcal{D},x)+\mathcal{L}_{\partial\Omega}^{\mathbf{CPINN}}(\mathcal{P},\mathcal{D},\overline{x}) DmaxPminLΩCPINN(P,D,x)+LΩCPINN(P,D,x)
其中:
L Ω C P I N N ( D , P , x ) = 1 N Ω ∑ i = 1 N Ω D Ω ( x i ) ( A [ P ] ( x i ) − f ( x i ) ) , L ∂ Ω C P I N N ( D , P , x ‾ ) = 1 N ∂ Ω ∑ i = 1 N ∂ Ω D ∂ Ω ( x ‾ i ) ( P ( x ‾ i ) − g ( x ‾ i ) ) . \begin{gathered} \mathcal{L}_{\Omega}^{\mathbf{CPINN}}(\mathcal{D},\mathcal{P},\boldsymbol{x}) =\frac1{N_\Omega}\sum_{i=1}^{N_\Omega}\mathcal{D}_\Omega(x_i)\left(\mathcal{A}[\mathcal{P}](x_i)-f(x_i)\right), \\ \mathcal{L}_{\partial\Omega}^{\mathbf{CPINN}}(\mathcal{D},\mathcal{P},\overline{\boldsymbol{x}}) =\frac1{N_{\partial\Omega}}\sum_{i=1}^{N_{\partial\Omega}}\mathcal{D}_{\partial\Omega}(\overline{x}_i)\left(\mathcal{P}\left(\overline{x}_i\right)-g\left(\overline{x}_i\right)\right). \end{gathered} LΩCPINN(D,P,x)=NΩ1i=1NΩDΩ(xi)(A[P](xi)f(xi)),LΩCPINN(D,P,x)=NΩ1i=1NΩDΩ(xi)(P(xi)g(xi)).
上述博弈的纳什均衡为 P ≡ u \mathcal{P} \equiv u Pu D ≡ 0 \mathcal{D} \equiv 0 D0。因此,计算此类零和博弈中纳什均衡的迭代算法可用于近似求解 PDE。在本文中, P \mathcal{P} P D \mathcal{D} D 是分别具有双曲正切和 ReLU 激活函数的全连接网络。每个网络的层数和神经元数量取决于 PDE 问题,优化器选择为ACGD。

实验结果

作者在二维Poisson方程、 非线性Schrödinger方程, 带粘滞项的Burgers’ 方程以及Allen-Cahn方程上进行了试验,并对PINN + Adam以及CPINN + ACGD的组合进行了对比。

同时,由于ACGD 使用 GMRES (Saad & Schultz, 1986) 和通过自动微分获得的 Hessian 向量积来求解 CGD 的更新。因此,(A)CGD 的迭代比 Adam 的迭代要昂贵得多。为了公平地考虑这种差异,作者还提供了两种方法所需的通过神经网络的前向传递次数。

Poisson

Δ u ( x , y ) = − 2 sin ⁡ ( x ) cos ⁡ ( y ) , x , y ∈ [ − 2 , 2 ] \Delta u(x,y)=-2\sin(x)\cos(y),\quad x,y\in[-2,2] Δu(x,y)=2sin(x)cos(y),x,y[2,2]

施加如下狄利克雷边界条件:
u ( x , − 2 ) = sin ⁡ ( x ) cos ⁡ ( − 2 ) , u ( − 2 , y ) = sin ⁡ ( − 2 ) cos ⁡ ( y ) , u ( x , 2 ) = sin ⁡ ( x ) cos ⁡ ( 2 ) , u ( 2 , y ) = sin ⁡ ( 2 ) cos ⁡ ( y ) . \begin{aligned}u(x,-2)&=\sin(x)\cos(-2),\quad&u(-2,y)&=\sin(-2)\cos(y),\\u(x,\quad2)&=\sin(x)\cos(\quad2),\quad&u(\quad2,y)&=\sin(\quad2)\cos(y).\end{aligned} u(x,2)u(x,2)=sin(x)cos(2),=sin(x)cos(2),u(2,y)u(2,y)=sin(2)cos(y),=sin(2)cos(y).
其精确解为:
u ( x , y ) = sin ⁡ ( x ) cos ⁡ ( y ) . u(x,y)=\sin(x)\cos(y). u(x,y)=sin(x)cos(y).
在这里插入图片描述

在这里插入图片描述

Schrödinger

u t + 1 2 u x x + ∣ u ∣ 2 u = 0 , x ∈ [ − 5 , 5 ] , t ∈ [ 0 , π / 2 ] u_t+\frac12u_{xx}+|u|^2u=0,\quad x\in[-5,5],\quad t\in[0,\pi/2] ut+21uxx+u2u=0,x[5,5],t[0,π/2]

施加如下初始/边界条件:
u ( 0 , x ) = 2 sech ⁡ ( x ) , u ( t , − 5 ) = u ( t , 5 ) , u x ( t , − 5 ) = u x ( t , 5 ) u(0,x)=2\operatorname{sech}(x),\quad u(t,-5)=u(t,5),\quad u_x(t,-5)=u_x(t,5) u(0,x)=2sech(x),u(t,5)=u(t,5),ux(t,5)=ux(t,5)
在这里插入图片描述

Burgers’

u t + u u x − ( 0.01 / π ) u x x = 0 , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 0 ] u_t+uu_x-(0.01/\pi)u_{xx}=0,\quad x\in[-1,1],\quad t\in[0,0] ut+uux(0.01/π)uxx=0,x[1,1],t[0,0]

施加如下初始/边界条件:
u ( 0 , x ) = − sin ⁡ ( π x ) , u ( t , − 1 ) = u ( t , 1 ) = 0 u(0,x)=-\sin(\pi x),\quad u(t,-1)=u(t,1)=0 u(0,x)=sin(πx),u(t,1)=u(t,1)=0
在这里插入图片描述

Allen-Cahn

u t − 0.0001 u x x + 5 u 3 − 5 u = 0 , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] u_t-0.0001u_{xx}+5u^3-5u=0,\quad x\in[-1,1],\quad t\in[0,1] ut0.0001uxx+5u35u=0,x[1,1],t[0,1]

施加如下初始/边界条件:
u ( 0 , x ) = x 2 cos ⁡ ( π x ) , u ( t , − 1 ) = u ( t , 1 ) , u x ( t , − 1 ) = u x ( t , 1 ) u(0,x)=x^2\cos(\pi x),\quad u(t,-1)=u(t,1),\quad u_x(t,-1)=u_x(t,1) u(0,x)=x2cos(πx),u(t,1)=u(t,1),ux(t,1)=ux(t,1)

在这里插入图片描述

算法和优化器排列组合

在这里插入图片描述

在这里插入图片描述

总结

这篇文章利用传统的有限元方法对PDE进行了分析,并认为平方损失在面对病态问题时会抑制迭代求解器的收敛性。于是作者通过将原问题转换为鞍点问题,构造了一个在纳什均衡点处与原问题等价的博弈情境,并利用ACGD来进行优化。

单从发布时间上看,这篇文章似乎比Is L 2 L^2 L2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network更早意识到平方损失所带来的问题,但个人感觉理论方面的证明有所欠缺,比如纳什均衡点的证明、 A \boldsymbol{A} A 为病态矩阵时的具体分析等。

同时,如果(A)CGD 的迭代比 Adam 的迭代要昂贵得多,那么,直接使用训练时间来衡量其表现不是一个更直接的方法吗?为什么要使用前向传播次数来对比其开销呢?因为原文代码使用了老版本的torch,无法在30系以上显卡安装,因此我还没有跑原文代码,后面打算在服务器上跑一下试试,看看二者的时间开销如何。

相关链接:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Physics-informed network(PIN)是一种结合物理学原理的神经网络模型。传统的神经网络模型主要基于统计数据进行训练和预测,但这种方法对于不充分的数据或者极端情况下的预测效果较差。 而PIN则采用物理学原理作为约束条件来指导神经网络的训练和预测。通过将物理方程和约束条件嵌入神经网络的架构中,使得网络能够理解和遵循物理规律。具体实现时,可以将物理方程拆分为偏微分方程或常微分方程的形式,并将其作为神经网络的一部分。 PIN的优点在于能够在数据有限的情况下提高模型的泛化能力。通过引入物理学约束,可以减少模型的过拟合风险,并对缺失数据进行补充。此外,PIN还能够处理边界条件和不确定性,提高模型的鲁棒性和可解释性。在许多物理问题中,传统方法往往需要手动调整和优化模型参数,而PIN的训练过程更加自动化和高效。 然而,PIN也存在一些挑战和限制。首先,将物理学原理与神经网络结合需要深入理解领域知识和具体物理问题的数学形式。其次,对于复杂的物理问题,需要设计合适的网络架构和优化算法来保证模型的收敛性和准确性。此外,PIN的训练时间也可能相对较长,尤其是在规模庞大的问题上。 总体而言,Physics-informed network是一种有潜力的方法,可以结合数据驱动的神经网络和物理模型,提高模型的可靠性和预测能力。随着深度学习和物理建模的不断发展,PIN在解决实际物理问题和工程应用中具有广泛的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xuelanghanbao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值