论文阅读:Competitive Physics Informed Networks
Competitive Physics Informed Networks
问题分析
一个PDE问题可以表示为如下形式:
A [ u ] = f , i n Ω u = g , o n ∂ Ω , \begin{aligned} \mathcal{A}[u]&=f,\mathrm{~in~}\Omega\\ u&=g,\mathrm{~on~}\partial\Omega, \end{aligned} A[u]u=f, in Ω=g, on ∂Ω,
在有限元方法中,通常会考虑基函数集 { ψ i } 1 ≤ i ≤ dim ( π ) \left\{\psi_i\right\}_{1\leq i\leq\dim(\boldsymbol{\pi})} {
ψi}1≤i≤dim(π) ,通过定义 A ∈ R N Ω × dim ( π ) A\in\mathbb{R}^{N_{\Omega}\times\dim(\boldsymbol{\pi})} A∈RNΩ×dim(π) 以及 f ∈ R N Ω f\in\mathbb{R}^{N_{\Omega}} f∈RNΩ 可以将上述PDE问题进行如下离散:
A i j : = A [ ψ j ] ( x i ) , f i : = f ( x i ) A_{ij}:=\mathcal{A}[\psi_j](x_i),\quad f_i:=f(x_i) Aij:=A[ψj](xi),fi:=f(xi)
得到离散PDE如下:
A π = f . \boldsymbol{A}\boldsymbol{\pi}= \boldsymbol{f}. Aπ=f.
考虑一个同样由这组基函数构成的神经网络,表示如下:
P ( x ) = ∑ i = 1 d i m ( π ) π i ψ i ( x ) \mathcal{P}(x)=\sum_{i=1}^{\mathrm{dim}(\boldsymbol{\pi})}\pi_i\psi_i(x) P(x)=i=1∑dim(π)πiψi(x)
PINN就是通过将上述等式转换为最小二乘问题,来对PDE的解进行近似:
min π ∥ A π − f ∥ 2 , \min_{\boldsymbol{\pi}}\|\boldsymbol{A\pi-f}\|^2, πmin∥Aπ−f∥2,
其解为 π = ( A ⊤ A ) − 1 A ⊤ f \boldsymbol{\pi=(A^\top A)^{-1}A^\top f} π=(A⊤A)−1A
CompetitivePhysics-InformedNetworksforPDEs

文章提出了一种新的解决偏微分方程(PDE)的方法,称为竞争物理信息网络(CPINN)。CPINN通过将PDE的最小二乘问题转换为鞍点问题,解决了PINN在处理病态矩阵时的收敛问题。通过引入博弈理论,网络在纳什均衡点处找到PDE的解。实验在多个方程上展示了CPINN相对于PINN+Adam的改进,尽管(A)CGD的迭代成本更高。文章强调了病态系统的挑战并提出了用博弈理论优化的策略。
最低0.47元/天 解锁文章
15万+

被折叠的 条评论
为什么被折叠?



