Competitive Physics Informed Networks

CompetitivePhysics-InformedNetworksforPDEs
文章提出了一种新的解决偏微分方程(PDE)的方法,称为竞争物理信息网络(CPINN)。CPINN通过将PDE的最小二乘问题转换为鞍点问题,解决了PINN在处理病态矩阵时的收敛问题。通过引入博弈理论,网络在纳什均衡点处找到PDE的解。实验在多个方程上展示了CPINN相对于PINN+Adam的改进,尽管(A)CGD的迭代成本更高。文章强调了病态系统的挑战并提出了用博弈理论优化的策略。

Competitive Physics Informed Networks

问题分析

一个PDE问题可以表示为如下形式:
A [ u ] = f ,   i n   Ω u = g ,   o n   ∂ Ω , \begin{aligned} \mathcal{A}[u]&=f,\mathrm{~in~}\Omega\\ u&=g,\mathrm{~on~}\partial\Omega, \end{aligned} A[u]u=f, in Ω=g, on Ω,
在有限元方法中,通常会考虑基函数集 { ψ i } 1 ≤ i ≤ dim ⁡ ( π ) \left\{\psi_i\right\}_{1\leq i\leq\dim(\boldsymbol{\pi})} { ψi}1idim(π) ,通过定义 A ∈ R N Ω × dim ⁡ ( π ) A\in\mathbb{R}^{N_{\Omega}\times\dim(\boldsymbol{\pi})} ARNΩ×dim(π) 以及 f ∈ R N Ω f\in\mathbb{R}^{N_{\Omega}} fRNΩ 可以将上述PDE问题进行如下离散:
A i j : = A [ ψ j ] ( x i ) , f i : = f ( x i ) A_{ij}:=\mathcal{A}[\psi_j](x_i),\quad f_i:=f(x_i) Aij:=A[ψj](xi),fi:=f(xi)
得到离散PDE如下:
A π = f . \boldsymbol{A}\boldsymbol{\pi}= \boldsymbol{f}. Aπ=f.
考虑一个同样由这组基函数构成的神经网络,表示如下:
P ( x ) = ∑ i = 1 d i m ( π ) π i ψ i ( x ) \mathcal{P}(x)=\sum_{i=1}^{\mathrm{dim}(\boldsymbol{\pi})}\pi_i\psi_i(x) P(x)=i=1dim(π)πiψi(x)
PINN就是通过将上述等式转换为最小二乘问题,来对PDE的解进行近似:
min ⁡ π ∥ A π − f ∥ 2 , \min_{\boldsymbol{\pi}}\|\boldsymbol{A\pi-f}\|^2, πminf2,
其解为 π = ( A ⊤ A ) − 1 A ⊤ f \boldsymbol{\pi=(A^\top A)^{-1}A^\top f} π=(AA)1A

### 物理信息增强的Transformer模型概述 物理信息增强的Transformer模型是一种融合了物理学原理与深度学习技术的新颖架构。这类模型旨在通过引入领域特定的知识来改进传统Transformer的表现,特别是在处理具有明确物理规律的任务时[^1]。 #### 模型结构特点 此类模型通常保留了标准Transformer的核心组件,如自注意力机制(self-attention mechanism),但增加了能够编码先验物理知识的部分。具体实现方式可能包括但不限于: - **嵌入物理约束**:通过对输入数据施加基于物理定律的限制条件,使得网络能够在训练过程中自动遵循这些规则。 - **定制损失函数**:设计特殊的损失项以惩罚违反已知物理特性的预测结果,从而引导模型更贴近实际物理现象的行为模式。 ```python import torch.nn as nn class PhysicsInformedLoss(nn.Module): def __init__(self, physics_constraint_weight=0.5): super(PhysicsInformedLoss, self).__init__() self.physics_constraint_weight = physics_constraint_weight def forward(self, prediction, target, physical_constraints): mse_loss = (prediction - target).pow(2).mean() physics_penalty = sum((c(prediction) for c in physical_constraints)) total_loss = mse_loss + self.physics_constraint_weight * physics_penalty return total_loss ``` #### 应用场景实例 在时间序列预测方面,iTransformer作为一种创新方案被提出并应用于该领域内。它不仅继承了经典Transformer强大的表达能力,还特别针对时间序列特性进行了优化调整,比如采用逆变换(inverse transform)策略提升长期依赖捕捉效率[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xuelanghanbao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值