深度学习(CNN)进行轴承故障诊断--edge impulse完成

本文介绍了如何借助Edge Impulse平台,利用深度学习(CNN)对轴承故障进行诊断。首先,数据从.mat格式转换为.csv,然后进行预处理。在Edge Impulse平台上创建工程并选择时间序列数据类型,上传裁剪后的数据集进行模型训练。经过调整训练参数,最终得到约78%准确率的模型。部署方案简单便捷。
摘要由CSDN通过智能技术生成

简介

参考为文章内容为知乎的深度学习(CNN)进行轴承故障诊断
因为之前使用过openmv合作的edge impulse平台训练过几个简单的模型,环境不用配置,方法也简单,因此复现一下。

数据处理:mat转csv

这里参考的是怎么把.mat 转化成.csv格式
利用matlab的函数将知乎文章提供的数据集转换成edge impulse平台支持的数据集格式
转换效果

原始数据

原始数据集是很大的,并且根据之前几次训练经验来看,数据集权重也会影响精确度,原始数据中normal的大小最大,内圈和外圈的大小差不多。为了方便我将它们进行了裁剪

进一步处理

裁剪后行数相同
裁剪后三个数据集行数上相同,以及为了方便后续处理,将数据轴第一行都命名为了data

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值