解决redis缓存穿透和缓存雪崩

一.缓存穿透:

     缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时需要从数据库查询,查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到数据库去查询,造成缓存穿透。

     解决办法:

     1.布隆过滤

  对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合则丢弃。还有最常见的则是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。

  补充:

      Bloom filter

  适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集

  基本原理及要点:对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。添加时增加计数器,删除时减少计数器。

     2. 缓存空对象. 将 null 变成一个值.

  也可以采用一个更为简单粗暴的方法,如果一个查询返回的数据为空(不管是数 据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。

 缓存空对象会有两个问题:

 第一,空值做了缓存,意味着缓存层中存了更多的键,需要更多的内存空间 ( 如果是攻击,问题更严重 ),比较有效的方法是针对这类数据设置一个较短的过期时间,让其自动剔除。

 第二,缓存层和存储层的数据会有一段时间窗口的不一致,可能会对业务有一定影响。例如过期时间设置为 5分钟,如果此时存储层添加了这个数据,那此段时间就会出现缓存层和存储层数据的不一致,此时可以利用消息系统或者其他方式清除掉缓存层中的空对象。

 

 

.缓存雪崩

    如果缓存集中在一段时间内失效,发生大量的缓存穿透,所有的查询都落在数据库上,造成了缓存雪崩。

    这个没有完美解决办法,但可以分析用户行为,尽量让失效时间点均匀分布。大多数系统设计者考虑用加锁或者队列的方式保证缓存的单线程(进程)写,从而避免失效时大量的并发请求落到底层存储系统上。

 

    解决方法

   1. java锁实现限流

 在缓存失效后,通过互斥锁来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。

代码如下:


 

     2.数据预热

  可以通过缓存reload机制,预先去更新缓存,再即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀

 

     3.给缓存的失效时间,加上一个随机值,避免集体失效


     4.做二级缓存,或者双缓存策略。

     A1为原始缓存,A2为拷贝缓存,A1失效时,可以访问A2A1缓存失效时间设置为短期,A2设置为长期。

    我们有两个缓存,缓存A和缓存B。缓存A的失效时间为20分钟,缓存B不设失效时间。自己做缓存预热操作。然后细分以下几个小点:

I 从缓存A读数据库,有则直接返回
II A没有数据,直接从B读数据,直接返回,并且异步启动一个更新线程。

III 更新线程同时更新缓存A和缓存B。


      5.缓存永远不过期

 这里的永远不过期包含两层意思:

    (1) 缓存上看,确实没有设置过期时间,这就保证了,不会出现热点key过期问题,也就是物理不过期。

     (2) 从功能上看,如果不过期,那不就成静态的了吗?所以我们把过期时间存在key对应的value里,如果发现要过期了,通过一个后台的异步线程进行缓存的构建,也就是逻辑过期.

 从实战看,这种方法对于性能非常友好,唯一不足的就是构建缓存时候,其余线程(非构建缓存的线程)可能访问的是老数据,但是对于一般的互联网功能来说这个还是可以忍受。


参考:最佳实践 缓存穿透,瞬间并发,缓存雪崩的解决方法

分布式之redis复习精讲

### Redis缓存穿透、击穿雪崩及其解决方案 #### 缓存穿透 (Cache Penetration) 当查询的数据在数据库中不存在,每次请求都会穿透到数据库层,造成大量无意义的查询压力。这种情况不仅浪费资源,还可能被恶意利用进行攻击。 为了防止这种现象的发生,可以采取如下措施: - **布隆过滤器**:使用布隆过滤器来判断数据是否存在,如果布隆过滤器返回false,则可以直接断定该键一定不存在于缓存与数据库之中[^1]。 - **空对象缓存**:对于确实不存在的数据项,在缓存中存储一个特殊的标记(如`null`),并设置较短的有效期。这样下次再遇到相同的查询时就可以直接命中缓存而无需访问数据库。 ```python import redis r = redis.Redis() def get_data_with_null_object(key): data = r.get(key) if not data: # 假设db_get是从数据库获取数据的方法 db_result = db_get(key) if not db_result: r.setex(key, 60, "NULL") # 设置过期时间为60秒 return db_result elif data.decode('utf-8') == 'NULL': return None else: return data ``` #### 缓存击穿 (Cache Breakdown) 某个热点key突然失效,此时大量的并发请求会瞬间打到数据库上,给数据库带来巨大压力。为了避免这一情况发生,可采用以下方法: - **加锁机制**:通过分布式锁控制同一时间只有一个线程能够更新缓存中的特定条目;其他线程则等待直到新的值已经被加载回缓存为止。 - **设置随机有效期**:为热Key设定带有轻微波动范围的时间戳作为其TTL(Time To Live),从而减少因多个实例同时到期而导致的大规模刷新操作的可能性。 ```python from threading import Lock lock_dict = {} def set_value_with_lock(redis_client, key, value, ttl=None): lock_key = f'lock:{key}' with Lock() as lock: acquired = False try: while True: if not redis_client.exists(lock_key): acquired = bool(redis_client.setnx(lock_key, 1)) if acquired: break time.sleep(0.1) # 尝试获得锁 redis_client.set(key, value, ex=ttl or random.randint(90, 120)) # TTL带有一些随机性 finally: if acquired: redis_client.delete(lock_key) def get_or_set_cache(redis_client, key, fetch_func, ttl=None): result = redis_client.get(key) if result is None: set_value_with_lock(redis_client, key, fetch_func(), ttl) result = redis_client.get(key) return result ``` #### 缓存雪崩 (Cache Avalanche) 由于某些原因导致大量缓存在几乎相同时间内集体失效,进而引发对后端服务的巨大冲击。针对此问题有几种常见处理方式: - **分片策略**:将不同类型的业务逻辑按照一定的规则分配至不同的Redis节点保存,即使部分机器出现问题也不会影响整个系统的正常运作。 - **限流降级**:引入熔断器模式,在极端情况下自动拒绝超出服务能力之外的新请求,保护核心功能不受损害。 ```python class RateLimiter(object): def __init__(self, rate_limit_per_minute): self.rate_limit_per_minute = rate_limit_per_minute self.requests_in_last_min = [] def allow_request(self): current_time = int(time.time()) one_minute_ago = current_time - 60 filtered_requests = list(filter(lambda t: t >= one_minute_ago, self.requests_in_last_min)) if len(filtered_requests) < self.rate_limit_per_minute: self.requests_in_last_min.append(current_time) return True else: return False rate_limiter = RateLimiter(rate_limit_per_minute=100) if rate_limiter.allow_request(): process_user_request() else: respond_with_error("Too many requests.") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值