- 博客(24)
- 收藏
- 关注
原创 datawhale大模型bot应用开发--task4:图片流
在图像流中,你可以通过可视化的操作方式灵活添加各种用于图像处理的节点,构建一个图像处理流程来最终生成一个图像。图像流发布后,支持在 Bot 或工作流中使用。智能生成图像生成、图像参考风格模板风格滤镜、宠物风格化智能编辑提示词推理、提示词优化、智能换脸、背景替换、光影融合、智能扩图、智能抠图、画质提升、美颜基础编辑画板、裁剪、调整、旋转、缩放通用节点选择器、消息并发限制每个开发者创建的所有工作流和图像流中,智能生成、智能编辑、风格模板类型下的图像流节点,并发数限制为最多 4 个。
2024-10-21 23:11:51 470
原创 datawhale大模型bot应用开发--task3:工作流
随着大模型(Large Language Models, LLM)技术的发展,业界已经普遍认识到,复杂的工作任务无法通过单次 LLM 调用来解决。为此,吴恩达、Itamar Friedman、Harrison Chase等专家提出了工作流(Workflow)和流程工程(Flow Engineering)等概念,旨在通过多次、分阶段的 LLM 调用和迭代,来实现更优的应用效果。
2024-10-18 00:48:42 550
原创 datawhale大模型bot应用开发--task2:Prompt工程
提示的设计(prompt engineering)决定了输出的质量、相关性以及准确性,因此,设计高效的 prompt 是使用大语言模型时的关键技术之一。然后构建自己的知识库,收集了一些有关龙之谷艾琳的图片,还有游戏中送给艾琳好感度的礼物,生成了一段有关艾琳的历险故事。描述 (Description): 你是游戏《龙之谷》中的角色艾琳,是一个充满活力的冒险伙伴,与用户进行对话。,你是老板,你需要告诉你的员工(大模型)要做什么,你的命令是否表达清楚,影响着你的员工是否能完成的你要求。
2024-10-15 01:08:17 1145
原创 datawhale大模型bot应用开发--task1:扣子智能体赛事速通指南
我想设计一个使用场景为担任程序员的开源项目引导者,助力参与和贡献的Bot 使用的工具是扣子专业版,用表格为我给出下面的信息,这些信息字段均放置到第一列,第二列是对应的阐述 Bot 名称 Bot 简介 目标人群 解决什么问题 Bot 主要功能 实用性:(Bot 场景描述) 技术性:(Bot 搭建完整度,以及功能设计的逻辑性、技术实现的成熟度以及整体方案的稳定性。) 体验性:(Bot 的用户体验质量,包括交互的自然度、响应的及时性和准确性等。
2024-10-12 21:53:57 298
原创 Tiny-universe手戳大模型TinyEval--task4
我们repo也支持自定义评测,如果进行了自定义sft数据,我们命名为custom_zh,或如果是英文的话可以为custom_en"instruction": "假设你是皇帝身边的女人--甄嬛","input": "你是谁?","output": "臣妾是甄嬛,家父是大理寺少卿。即可支持自定义数据集的评测~
2024-10-03 02:03:24 617
原创 Tiny-universe手戳大模型TinyRAG--task4
LLM会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generation,RAG)应时而生,成为 AI 时代的一大趋势。RAG 通过在语言模型生成答案之前,先从广泛的文档数据库中检索相关信息,然后利用这些信息来引导生成过程,极大地提升了内容的准确性和相关性。
2024-10-02 22:28:32 947
原创 Tiny-universe手戳大模型 TinyAgent--task3
这里基于React的方式,我们手动制作了一个最小的Agent结构(其实更多的是调用工具),尝试将React结构修改为SOP结构。一步一步手写Agent,可以让我们对Agent的构成和运作更加的了解。
2024-09-27 02:23:44 712
原创 Tiny-universe手戳大模型 Tiny-LLM--task2
该项目在于实现一个简单的大语言模型,从训练tokenizer开始,到训练模型,再到使用模型生成文本。仅使用Numpy和Pytorch即可实现一个简单的大语言模型训练,显存使用2G左右。
2024-09-23 22:30:17 1199
原创 Datawhale X 李宏毅苹果书 AI夏令营 深度学习详解进阶task1
优化神经网络过程中,首先,要理解为什么优化会失败,收敛在局部极限值与鞍点会导致优化失败。其次,可以对学习率进行调整,使用自适应学习率和学习率调度。最后,批量归一化可以改变误差表面。目录深度学习基础1. 局部极小值与鞍点1.1 临界点及其种类1.2 判断临界值种类的方法 我们在做优化的时候经常会发现,随着参数不断更新,训练的损失不会再下降, 但是我们对这个损失仍然不满意。图 1 中的两条曲线对应两个神经网络训练的过程。当参数对损失微分为零的时候,梯度下降就不能再更新参数了,训练就停下来了,损失不再下降了。
2024-08-27 00:49:16 643
原创 Datawhale AI 夏令营大模型技术微调——task2
总结:数据清洗需要下功夫,还有学习率和迭代次数可以调整一下试试,本次我迭代了30次,学习率改成了0.0007。加数据还没有尝试过。修改了原来的代码,使其有更健壮的提取方式。修改了一下代码,这样过滤效果会更好一些。尝试了更改回答的要求。
2024-08-14 22:11:32 261
原创 Datawhale AI 夏令营大模型微调 ----task1
定义的chinese_multiple_choice_questions该函数的主要逻辑是通过正则表达式匹配和提取文本中的问题和选项。对于选择题,它提取了问题的编号、文本和选项,并将它们存储在一个字典中。对于简答题,它只提取了问题的文本,并去除了前后的空白字符。函数当前只返回了选择题列表,如果需要同时处理简答题,可以修改函数以返回两个列表。
2024-08-11 23:58:21 856
原创 关于第二届世界科学智能大赛地球科学赛道:AI极端降水预报的一些反思
模型角度, 本次baseline中仅给出了卷积模型的示例, 但是针对赛题这种与时间序列强相关的问题, 时间序列中的特征也是需要考虑的一大因素, 可以尝试使用LSTM等对时间序列特征有良好提取能力的模型作为参考(因为赛题不允许使用任何开源模型。上图就是自己尝试的手写的lstm模型,由于时间关系还没有完全跑通,还有就是relu作为激活函数的重要性,使用了别的激活函数,不能上分。尝试过修改学习率,多少有点影响,试着修改过卷积神经网络的层数对结果的影响并不大。
2024-08-04 00:00:44 213
原创 sigmoid函数在逻辑回归以及深度学习的应用
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言一、分类问题1.sigmoid函数介绍2.sigmoid函数在深度学习上的应用3.sigmoid函数的优缺点二、二分类逻辑回归代码1.引入库2.读入数据总结欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一
2020-11-26 00:58:22 2818
原创 GAN,DCGAN详解
GAN介绍这个框架可以针对多种模型和优化算法提供特定的训练算法。在这篇文章中,我们探讨了生成模型通过将随机噪声传输到多层感知机来生成样本的特例,同时判别模型也是通过多层感知机实现的。我们称这个特例为对抗网络。在这种情况下,我们可以仅使用非常成熟的反向传播和丢弃算法训练两个模型,生成模型在生成样本时只使用前向传播算法。并且不需要近似推理和马尔可夫链作为前题。相关工作含隐变量的有向图模...
2020-02-24 23:33:28 2427
原创 深度不学习——————卷积神经网络,LeNet,AlexNet,VGG详解以及PyTorch代码实现
卷积神经网络卷积神经网络针对输入全部是图像的情况,将结构调整得更加合理,获得了不小的优势。与常规神经网络不同,卷积神经网络的各层中的神经元是3维排列的:宽度、高度和深度(这里的深度指的是激活数据体的第三个维度,而不是整个网络的深度,整个网络的深度指的是网络的层数)。举个例子,CIFAR-10中的图像是作为卷积神经网络的输入,该数据体的维度是32x32x3(宽度,高度和深度)。我们将看到,...
2020-02-18 23:50:06 2252
原创 深度不学习————Attention is all you need
Transformer The Motivation for Transformers我们想要并⾏化,但是RNNs本质上是顺序的 尽管有GRUs和LSTMs, RNNs仍然需要注意机制来处理⻓期依赖关系——否则状态之间的 path length 路径⻓度 会随着序列增⻓ 但如果注意⼒让我们进⼊任何⼀个状态……也许我们可以只⽤注意⼒⽽不需要RNN?Dot-Product...
2020-02-17 23:18:15 422
原创 深度不学习 ————Seq2seq,Attention,Machine Translation
Pre-Neural Machine Translation机器翻译(MT)是将⼀个句⼦ x 从⼀种语⾔( 源语⾔ )转换为另⼀种语⾔( ⽬标语⾔ )的句⼦ y 的任务。核⼼想法:从数据中学习概率模型。我们想要找到最好的英语句⼦ y ,给定法语句⼦ x使⽤Bayes规则将其分解为两个组件从⽽分别学习P(x|y)翻译模型分析单词和短语应该如何翻译(逼真)从并⾏数据中学习P...
2020-02-15 23:58:17 395
原创 深度不学习————LSTM,RNN,GRU模型、语言模型、双向RNN
目录RNNRNN语言模型RNN的优点RNN的缺点RNN参数说明Training a RNN Language Model如何计算?用困惑度来评估语言模型:为何关注语言模型RNN核⼼想法:重复使⽤ 相同 的权重矩阵W:传统的翻译模型只能以有限窗⼝⼤⼩的前 n 个单词作为条件进⾏语⾔模型建模,循环神经⽹络与其不同,RNN 有能⼒以语料库中所有前⾯的单词为...
2020-02-14 23:25:50 1137
原创 深度不学习——————softmax分类器
目录一、我们先谈谈线性分类器: 1.基本概念 2.有几点需要注意:3.对线性分类器的详细解释:二、线性可分SVM算法流程三、softmax分类器Softmax示意图SVM VS Softmax一、我们先谈谈线性分类器: 1.基本概念The classier must remember all of the training data and ...
2020-02-13 00:12:20 2416
原创 深度不学习——————线性回归
线性回归¶主要内容包括:线性回归的基本要素 线性回归模型从零开始的实现1.线性回归的基本要素:现在给定一个数据集,包含n个样本,x为属性表述的一个向量,维数为d,y为在向量x下的实际结果: 上式表示的是第i个样本的属性描述向量,x1到xd表示d个不同的属性。我们要利用这些属性综合...
2020-02-11 23:31:29 300
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人