[算法导论笔记]--单源最短路径

本文介绍了单源最短路径问题的重要性,并详细讲解了Bellman-Ford和Dijkstra两种算法。Bellman-Ford适用于边权重可为负的情况,而Dijkstra算法要求所有边权重非负,且效率更高。Dijkstra算法采用贪心策略,每次选择当前未处理节点中距离源节点最近的节点,通过松弛操作更新最短路径估计值。
摘要由CSDN通过智能技术生成

本文所贴示的伪代码均来源《算法导论》,本文只是对其中《单源最短路径》章节的简单总结,许多数学证明过程已忽略。

前言

最短路径的定义:给定一个图G=(V,E),希望找到从给定源节点s∈V 到每个结点v∈V 的最短路径。

单源最短路径可以用来解决许多其他问题,包括:

1、单目的地最短路径问题:找到从每个结点v到给定目的结点t的最短路径,如果将图的每条边的方向翻转过来,就可以将这个问题转换为单源最短路径问题。

2、单结点对最短路径问题:找到从给定结点u到给定结点v的最短路径,如果解决了针对单个结点u的单源最短路径问题,也就解决了这个问题。

3、所有结点对的最短路径问题:对于每个结点对u和v,找到从u到v的最短路径,虽然可以针对每一个结点运行一次单源最短路径算法,但是通常可以更快地解决这个问题。

注:最短路径算法通常依赖最短路径的一个重要性质---两个结点之间的一条最短路径包含着其他最短路径

一、一些定义

为了讨论单源最短路径问题,这里需要作一些必要的定义

最短路径的表示:通常情况下,我们不仅希望计算出最短路径的权重,还希望计算出最短路径上的结点。给定图G=(V,E),对于每个结点v,我们维持一个前驱结点v.p,该前驱结点可以是另一个结点或者NIL。这里的最短路径算法对每个结点的前驱进行设置,这样,将从结点v开始的前驱结点反过来,也就是从s到v的最短路径了。

最短路径树:最短路径树是一棵有根节点的树,该树包含了从源结点s到每个可以从s到达的结点的一条最短路径。当然,最短路径不是唯一的,最短路径树自然也不是唯一的。

松弛操作:本章算法需要使用松弛(relaxation)技术。对于每个结点v来说,我们维持一个属性v.d。用来记录从源结点s到结点v的最短路径权重的上界,我们称v.d为s到v的最短路径估计。这里使用下面的伪代码来对最短路径的估计和前驱结点进行初始化:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值