Dijkstra算法原理

原文地址:

http://www.cnblogs.com/skywang12345/p/3711516.html

Dijkstra算法

1.定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

2.算法描述

1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

(1) 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。

(2) 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。

(3) 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。

(4) 重复步骤(2)和(3),直到遍历完所有顶点。
在这里插入图片描述

以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。
在这里插入图片描述

初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!
第1步:将顶点D加入到S中。
此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起点D的距离是3。

第2步:将顶点C加入到S中。
上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。
此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。

第3步:将顶点E加入到S中。
上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。
此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。

第4步:将顶点F加入到S中。
此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。

第5步:将顶点G加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。

第6步:将顶点B加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。

第7步:将顶点A加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。

此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)。

讲解 Dijkstra 算法的基本思想,另外还有算法实现. 当然了,这个算法当路径点上万的时候效率上会降低。 我有另外的改进实现, 上万个点也是在200毫秒内完成。但是不知道怎么添加, 我只能在这里贴关键代码了 : static std::list<Node*> vecNodes; static std::list<Edge*> vecEdges; bool CDijkstras::DijkstrasFindPath(Node* psrcNode, Node* pdstNode, std::list<Node*>& vec, double& fromSrcDist) { if (psrcNode == 0 || pdstNode == 0) return false; if (psrcNode == pdstNode) { vec.push_back(pdstNode); return false; } std::list<Node*>::const_iterator it; for (it=vecNodes.begin(); it!=vecNodes.end(); it++) { (*it)->bAdded = false; (*it)->previous = 0; (*it)->distanceFromStart = MAXDOUBLE; (*it)->smallest = 0; } bool bFindDst = DijkstrasRouteInitialize(psrcNode, pdstNode); fromSrcDist = pdstNode->distanceFromStart; Node* previous = pdstNode; while (previous) { vec.push_back(previous); previous = previous->previous; } m_pDstNode = pdstNode; return bFindDst; } bool CDijkstras::DijkstrasRouteInitialize(Node* psrcNode, Node* pdstNode) { bool bFindDst = false; psrcNode->distanceFromStart = 0; Node* smallest = psrcNode; smallest->bAdded = true; std::list<Node*>::const_iterator it, ait; std::list<Node*> AdjAdjNodes ; for (it=psrcNode->connectNodes.begin(); it!=psrcNode->connectNodes.end(); it++) { if ((*it)->bAdded) continue; (*it)->smallest = psrcNode; (*it)->bAdded = true; AdjAdjNodes.push_back(*it); } while (1) { std::list<Node*> tempAdjAdjNodes; for (it=AdjAdjNodes.begin(); it!=AdjAdjNodes.end(); it++) { Node* curNode = *it; for (ait=curNode->connectNodes.begin(); ait!=curNode->connectNodes.end(); ait++) { Node* pns = *ait; double distance = Distance(pns, curNode) + pns->distanceFromStart; if (distance < curNode->distanceFromStart) { curNode->distanceFromStart = distance; curNode->previous = pns; } if (pns->bAdded == false) { tempAdjAdjNodes.push_back(pns); pns->bAdded = true; } } if (curNode == pdstNode) { bFindDst = true; } } if (bFindDst) break; if (tempAdjAdjNodes.size() == 0) break; AdjAdjNodes.clear(); AdjAdjNodes = tempAdjAdjNodes; } return bFindDst; } // Return distance between two connected nodes float CDijkstras::Distance(Node* node1, Node* node2) { std::list<Edge*>::const_iterator it; for (it=node1->connectEdges.begin(); it!=node1->connectEdges.end(); it++) { if ( (*it)->node1 == node2 || (*it)->node2 == node2 ) return (*it)->distance; } #ifdef _DEBUG __asm {int 3}; #endif return (float)ULONG_MAX; } /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ //得到区域的Key// __int64 CDijkstras::GetRegionKey( float x, float z ) { long xRegion = (long)(x / m_regionWidth); long zRegion = (long)(z / m_regionHeight); __int64 key = xRegion; key <<= 32; key |= ( zRegion & 0x00000000FFFFFFFF ); return key; } //得到区域的Key// __int64 CDijkstras::GetRegionKey( long tx, long tz ) { long xRegion = tx ; long zRegion = tz ; __int64 key = xRegion; key <<= 32; key |= ( zRegion & 0x00000000FFFFFFFF ); return key; } //取得一个区域内的所有的路径点, 返回添加的路径点的个数// unsigned long CDijkstras::GetRegionWaypoint (__int64 rkey, std::vector<Node*>& vec) { unsigned long i = 0; SAME_RANGE_NODE rangeNode = mmapWaypoint.equal_range(rkey); for (CRWPIT it=rangeNode.first; it!=rangeNode.second; it++) { i++; Node* pn = it->second; vec.push_back(pn); } return i; } inline bool cmdDistanceNode (Node* pNode1, Node* pNode2) { return pNode1->cmpFromStart < pNode2->cmpFromStart; }; //添加一个路径点// Node* CDijkstras::AddNode (unsigned long id, float x, float y, float z) { Node* pNode = new Node(id, x, y, z); __int64 rkey = GetRegionKey(x, z); mmapWaypoint.insert(make_pair(rkey, pNode)); mapID2Node[id] = pNode; return pNode; } //添加一条边// Edge* CDijkstras::AddEdge (Node* node1, Node* node2, float fCost) { Edge* e = new Edge (node1, node2, fCost); return e; } //通过路径点ID得到路径点的指针// Node* CDijkstras::GetNodeByID (unsigned long nid) { std::map<unsigned long, Node*>::const_iterator it; it = mapID2Node.find(nid); if (it!=mapID2Node.end()) return it->second; return NULL; }
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值