LeetCode581. Shortest Unsorted Continuous Subarray


Description

Given an integer array, you need to find one continuous subarray that if you only sort this subarray in ascending order, then the whole array will be sorted in ascending order, too.

You need to find the shortest such subarray and output its length.

Example 1:

Input: [2, 6, 4, 8, 10, 9, 15]
Output: 5
Explanation: You need to sort [6, 4, 8, 10, 9] in ascending order to make the whole array sorted in ascending order.

Note:
Then length of the input array is in range [1, 10,000].
The input array may contain duplicates, so ascending order here means <=.

my program

思路:构建一个排序好的数组,然后与原数组进行对比,找出最先和最后不同的元素,相减+1即为所求答案。此算法时间复杂度是 O(nlogn) ,空间复杂度是 O(n) .

class Solution {
public:
    int findUnsortedSubarray(vector<int>& nums) {
        vector<int> tmp = nums;
        sort(tmp.begin(), tmp.end());
        int i = 0;
        int j = nums.size() -1;
        for (; i< nums.size(); i++) {
            if (nums[i] != tmp[i])
                break;
        }
        if (i >= nums.size())
            return 0;
        for (; j > 0; j--) {
            if (nums[j] != tmp[j])
                break;
        }
        return j - i + 1;
    }
};

Submission Details
307 / 307 test cases passed.
Status: Accepted
Runtime: 56 ms

解法二

/**
 *            /------------\
 * nums:  [2, 6, 4, 8, 10, 9, 15]
 * minr:   2  4  4  8   9  9  15
 *         <--------------------
 * maxl:   2  6  6  8  10 10  15
 *         -------------------->
 */
class Solution {
public:
    int findUnsortedSubarray(vector<int>& nums) {
        int n = nums.size();
        vector<int> maxlhs(n);   // max number from left to cur
        vector<int> minrhs(n);   // min number from right to cur
        for (int i = n - 1, minr = INT_MAX; i >= 0; i--) minrhs[i] = minr = min(minr, nums[i]);
        for (int i = 0,     maxl = INT_MIN; i < n;  i++) maxlhs[i] = maxl = max(maxl, nums[i]);

        int i = 0, j = n - 1;
        while (i < n && nums[i] <= minrhs[i]) i++;
        while (j > i && nums[j] >= maxlhs[j]) j--;

        return j + 1 - i;
    }
};

此算法时间复杂度仅是 O(n) ,空间复杂度是 O(n) . 优于第一种算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值