Alexnet结构及代码

AlexNet是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevsky设计的。也是在那年之后,更多的更深的神经网路被提出,比如优秀的vgg,GoogleLeNet。其官方提供的数据模型,准确率达到57.1%,top 1-5 达到80.2%. 这项对于传统的机器学习分类算法而言,已经相当的出色。

上图所示是caffe中alexnet的网络结构,上图采用是两台GPU服务器,所有会看到两个流程图。下边把AlexNet的网络结构示意一下:

简化的结构为:

AlexNet为啥取得比较好的结果呢?

1. 使用了Relu激活函数。

Relu函数:f(x)=max(0,x)

 

基于ReLU的深度卷积网络比基于tanhsigmoid的网络训练快数倍,下图是一个基于CIFAR-10的四层卷积网络在tanh和ReLU达到25%的training error的迭代次数:

2. 标准化(Local Response Normalization

使用ReLU f(x)=max(0,x)后,你会发现激活函数之后的值没有了tanh、sigmoid函数那样有一个值域区间,所以一般在ReLU之后会做一个normalization,LRU就是稳重提出(这里不确定,应该是提出?)一种方法,在神经科学中有个概念叫“Lateral inhibition”,讲的是活跃的神经元对它周边神经元的影响。

3. Dropout

Dropout也是经常说的一个概念,能够比较有效地防止神经网络的过拟合。 相对于一般如线性模型使用正则的方法来防止模型过拟合,而在神经网络中Dropout通过修改神经网络本身结构来实现。对于某一层神经元,通过定义的概率来随机删除一些神经元,同时保持输入层与输出层神经元的个人不变,然后按照神经网络的学习方法进行参数更新,下一次迭代中,重新随机删除一些神经元,直至训练结束。

4. 数据增强(data augmentation

在深度学习中,当数据量不够大时候,一般有4解决方法:

>> data augmentation——人工增加训练集的大小——通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据

>> Regularization——数据量比较小会导致模型过拟合, 使得训练误差很小而测试误差特别大. 通过在Loss Function 后面加上正则项可以抑制过拟合的产生. 缺点是引入了一个需要手动调整的hyper-parameter。

>> Dropout——也是一种正则化手段. 不过跟以上不同的是它通过随机将部分神经元的输出置零来实现

>> Unsupervised Pre-training——用Auto-Encoder或者RBM的卷积形式一层一层地做无监督预训练, 最后加上分类层做有监督的Fine-Tuning

AlexNet的TensorFlow实现(仅参考):


# -*- coding=UTF-8 -*-

import sys

import os

import random

import cv2

import math

import time

import numpy as np

import tensorflow as tf

import linecache

import string

import skimage

import imageio

# 输入数据

import input_data

mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

# 定义网络超参数

learning_rate = 0.001

training_iters = 200000

batch_size = 64

display_step = 20

# 定义网络参数

n_input = 784  # 输入的维度

n_classes = 10 # 标签的维度

dropout = 0.8  # Dropout 的概率

# 占位符输入

x = tf.placeholder(tf.types.float32, [None, n_input])

y = tf.placeholder(tf.types.float32, [None, n_classes])

keep_prob = tf.placeholder(tf.types.float32)

# 卷积操作

def conv2d(name, l_input, w, b):

    return tf.nn.relu(tf.nn.bias_add( \

    tf.nn.conv2d(l_input, w, strides=[1, 1, 1, 1], padding='SAME'),b) \

    , name=name)

# 最大下采样操作

def max_pool(name, l_input, k):

    return tf.nn.max_pool(l_input, ksize=[1, k, k, 1], \

    strides=[1, k, k, 1], padding='SAME', name=name)

# 归一化操作

def norm(name, l_input, lsize=4):

    return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name)

# 定义整个网络 

def alex_net(_X, _weights, _biases, _dropout):

    _X = tf.reshape(_X, shape=[-1, 28, 28, 1]) # 向量转为矩阵

    # 卷积层

    conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1'])

    # 下采样层

    pool1 = max_pool('pool1', conv1, k=2)

    # 归一化层

    norm1 = norm('norm1', pool1, lsize=4)

    # Dropout

    norm1 = tf.nn.dropout(norm1, _dropout)

 

    # 卷积

    conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2'])

    # 下采样

    pool2 = max_pool('pool2', conv2, k=2)

    # 归一化

    norm2 = norm('norm2', pool2, lsize=4)

    # Dropout

    norm2 = tf.nn.dropout(norm2, _dropout)

 

    # 卷积

    conv3 = conv2d('conv3', norm2, _weights['wc3'], _biases['bc3'])

    # 下采样

    pool3 = max_pool('pool3', conv3, k=2)

    # 归一化

    norm3 = norm('norm3', pool3, lsize=4)

    # Dropout

    norm3 = tf.nn.dropout(norm3, _dropout)

 

    # 全连接层,先把特征图转为向量

    dense1 = tf.reshape(norm3, [-1, _weights['wd1'].get_shape().as_list()[0]]) 

    dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1') 

    # 全连接层

    dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2') # Relu activation

 

    # 网络输出层

    out = tf.matmul(dense2, _weights['out']) + _biases['out']

    return out

 

# 存储所有的网络参数

weights = {

    'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])),

    'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])),

    'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256])),

    'wd1': tf.Variable(tf.random_normal([4*4*256, 1024])),

    'wd2': tf.Variable(tf.random_normal([1024, 1024])),

    'out': tf.Variable(tf.random_normal([1024, 10]))

}

biases = {

    'bc1': tf.Variable(tf.random_normal([64])),

    'bc2': tf.Variable(tf.random_normal([128])),

    'bc3': tf.Variable(tf.random_normal([256])),

    'bd1': tf.Variable(tf.random_normal([1024])),

    'bd2': tf.Variable(tf.random_normal([1024])),

    'out': tf.Variable(tf.random_normal([n_classes]))

}

# 构建模型

pred = alex_net(x, weights, biases, keep_prob)

# 定义损失函数和学习步骤

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# 测试网络

correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))

accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# 初始化所有的共享变量

init = tf.initialize_all_variables()

# 开启一个训练

with tf.Session() as sess:

    sess.run(init)

    step = 1

    # Keep training until reach max iterations

    while step * batch_size < training_iters:

        batch_xs, batch_ys = mnist.train.next_batch(batch_size)

        # 获取批数据

        sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})

        if step % display_step == 0:

            # 计算精度

            acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})

            # 计算损失值

            loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})

            print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc)

        step += 1

    print "Optimization Finished!"

    # 计算测试精度

    print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.})

 

  • 5
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值