AlexNet模型详解及代码实现

AlexNet是2012年ImageNet竞赛的冠军模型,它引入了ReLU激活函数、GPU并行训练、局部响应归一化、重叠池化、Dropout和数据增强等创新技术。ReLU提升了训练速度,而GPU并行训练解决了内存限制。局部响应归一化用于增加泛化能力,重叠池化和Dropout有助于防止过拟合。数据增强则通过图像变换和RGB通道强度调整增强训练集。AlexNet网络由5个卷积层和3个全连接层构成,对深度学习发展产生了深远影响。
摘要由CSDN通过智能技术生成

一、 背景

AlexNet是在2012年由Alex Krizhevsky等人提出的,该网络在ImageNet大赛上夺得了冠军,并且错误率比第二名高了很多。
论文地址:ImageNet Classification with Deep Convolutional Neural Networks
AlexNet论文中的亮点:

  • 使用ReLU激活函数加速收敛
  • 使用两个 GPU 并行,加速训练。
  • 提出局部响应归一化(Local Response Normalization, LRN)增加泛化特性
  • 使用了重叠池化(Overlapping Pooling)避免过拟合。
  • 使用Dropout机制和数据增强策略减少过拟合

1. ReLU非线性

激活函数一般采用tanh或者sigmoid,但是tanhsigmoid都是饱和激活函数,考虑到梯度下降的训练时间问题,所以引入了修正线性单元(ReLU)作为激活函数,即: f ( x ) = m a x ( 0 , x ) f(x)=max(0,x) f(x)=max(0,x),其不存在饱和区,导数始终为1,梯度更大,计算量也更少,训练时间也越快。
tanh(虚线)与ReLU(实线)的收敛速度对比如下图所示:
在这里插入图片描述
补充: 饱和非线性和非饱和非线性

  • 饱和非线性
    饱和的激活函数会将输出结果缩放到有限的区间,例如:
    tanh激活函数为 f ( x ) = e x − e − x e x + e − x f(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}} f(x)=ex+exexex的范围是[-1,1],所以它是饱和的。
    在这里插入图片描述
    sigmoid激活函数为 f ( x ) = 1 1 + e − x f(x)=\frac{1}{1+e^{-x}} f(x)=1+ex1,它的范围是[0,1],所以它是饱和的。
    在这里插入图片描述
  • 非饱和非线性
    非饱和的激活函数会将输出结果缩放到无穷区间。即: ( ∣ lim ⁡ z → − ∞ F ( z ) ∣ = + ∞ ) ∨ ( ∣ lim ⁡ z → + ∞ F ( z ) ∣ = + ∞ (|\lim\limits_{z \rightarrow-\infty}F(z)|=+\infty)∨(|\lim\limits_{z\rightarrow+\infty}F(z)|=+\infty zlimF(z)=+
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值