经典卷积神经网络结构——AlexNet网络结构详解(卷积神经网络入门,Keras代码实现)

本文详细介绍了AlexNet,一个在2012年ImageNet竞赛中取得突破性成绩的经典卷积神经网络模型。模型包含5个卷积层、3个全连接层及池化层,使用ReLU激活函数和最大池化。作者在GitHub提供了Keras实现的代码,并讨论了模型中的技巧,如分块卷积、批量归一化和Dropout,以帮助理解和应用AlexNet。
摘要由CSDN通过智能技术生成

背景简介

在 LeNet 问世后的第4年,2012年, AlexNet 在 ImageNet LSVRC-2010 数据集上对1000个类别的图像进行分类取得了当时最好的效果;同时在 ILSVRC-2012 数据集上取得了当时第一的成绩。在AlexNet之后,图像分类模型越来越复杂,网络也越来越 deep。现在 AlexNet 仍然可以应用到小数据集上,做一些验证性的实验。

原论文

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
文章发在 NIPS 上。截止目前引用次数为36782!

个人 Github 实现

https://github.com/uestcsongtaoli/AlexNet

模型介绍

AlexNet Architecture
上图是 Alex Krizhevsky 原论文中 AlexNet 结构图,做了简单的标注。
该模型由5个卷积层和3个全连接层构成,其中还有3个 Pooling 层。
先定义 conv block 包括卷积、BatchNormalization 和 Activation:

def Conv_block(layer, filters, kernerl_size=(3, 3), strides=(1, 1), padding="valid", name=None):
	x = Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, name=name)(layer)
	x = BatchNormalization()(x)
	x = Activation("relu")(x)
	return x
  1. 卷积层 Conv_1
x = Conv_block(x, filters=
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值