今天,发生一件非常有趣的事情。
公司同事问了我一个问题:为什么 2.0 - 1.1 = 0.89999999 呢?不应该是 0.9吗?
原来是,他问了周围一圈的同事,都给他的是同一个回答,说这是精度问题。他百思不得其解,怎么就会产生精度问题呢。再问,就没人知道原因了。
然后,我就看到了他抱着一本厚厚的书在看。拿过来一看,是一本Java书,厚厚的六百多页,这还仅是第一卷。哟呵,这是准备大干一场啊。
看在他这么努力学习的份上,还有他那对知识极度渴望的眼神。我决定,把我毕生所学传授与他。
于是,就给他详细讲解了,计算机中是怎么存储一个数的,十进制是怎么在转二进制的过程中丢失精度的,以及浮点数是怎么遵循IEEE 754 规范的,在浮点数进行加减运算的过程中会经历对阶、移位运算等过程,以及在此过程中是怎么丢失精度的。(这些问题在之前的文章中都有解答,参看“为什么0.1 0.2=0.30000000000000004”)
然后,成功的把他彻底搞懵逼了。怎么这么难啊。
原来,他的计算机基础比我还匮乏,不知道什么是位运算,不知道什么是原码、反码和补码。
本着我的热心肠,我就给他普及了一下这些知识 ---- 负数的补码形式和位移运算。
我们知道,一个数分为有符号和无符号。对于,有符号的数来说,最高位代表符号位,即最高位1代表负数,0代表正数。
在计算机中,存储一个数的时候,都是以补码的形式存储的。而正数和负数的补码表示方式是不一样的。正数的补码就等于它的原码,而负数的补码是原码除符号